Journal of Radio Electronics. eISSN 1684-1719. 2023. ¹12
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.12.20

 

PULSE-interval MODULATION

OF ULTRA-WIDEBAND CHAOTIC RADIO PULSES:

THEORY AND EXPERIMENT

 

L.V. Kuzmin, E.V. Efremova, M.M. Petrosyan, V.V. Itskov

 

Kotelnikov IRE RAS

125009, Russia, Moscow, Mokhovaya str., 11, b.7

 

The paper was received November 30, 2023.

 

Abstract. An approach to reduce the negative impact of multipath signal propagation (interpulse interference) in a wireless communication channel has been proposed. Pulse-interval modulation of chaotic radio pulses allows to increase the time interval between pulses without reducing the average bitrate. The possibility of using this method in ultra-wideband microwave channels with multipath propagation is demonstrated. The noise immunity of the AWGN channel has been studied. An experimental implementation of the method is described.

Key words: ultra-wideband signals, pulse-position modulation; pulse-interval modulation; chaotic radio pulses; detection of chaotic signals.

Financing: State assignment of Kotelnikov IRE of the RAS, ¹ FFWZ-2022-0006.

Corresponding author: Kuzmin Lev Viktorovich, lvkuzmin@gmail.com

References

1. Yang L., Giannakis G. B. Ultra-wideband communications: an idea whose time has come //IEEE signal processing magazine. – 2004. – V. 21. – ¹. 6. – P. 26-54.

2. Niemelä V. et al. An ultra wideband survey: Global regulations and impulse radio research based on standards //IEEE Communications Surveys & Tutorials. – 2016. – V. 19. – ¹. 2. – P. 874-890.

3. Breed G. A summary of FCC rules for ultra wideband communications //High Frequency Electronics. – 2005. – V. 4. – ¹. 1. – P. 42-44.

4. Mandke K. et al. The evolution of ultra wide band radio for wireless personal area networks //Spectrum. – 2003. – V. 3. – P. 10.6.

5. Task Group 3a. IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a). 2002. URL: http://www.ieee802.org/15/pub/TG3a.html (äàòà îáð. 28.11.2023).

6. “IEEE Standard for Low-Rate Wireless Networks”. Â: IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011). – 2016. – C. 1-709.

7. IEEE Std 802.15.6-2012; IEEE Standard for Local and metropolitan area networks–Part 15.6: Wire-less Body Area Networks. New York City, NY, USA: IEEE Press. – 2012. – P. 1-271.

8. IEEE Std 802.15.4z-2020 (Amendment to IEEE Std 802.15.4-2020). IEEE Standard for Low-Rate Wireless Networks–Amendment 1: Enhanced Ultra Wideband (UWB) Physical Layers (PHYs) and Associated Ranging Techniques. New York City, NY, USA: IEEE Press. 2020. – C. 1-174.

9. Stocker M. et al. On the performance of ieee 802.15. 4z-compliant ultra-wideband devices //2022 Workshop on Benchmarking Cyber-Physical Systems and Internet of Things (CPS-IoTBench). – IEEE, 2022. – P. 28-33.

10. Chen H. et al. A 4-to-9GHz IEEE 802.15. 4z-Compliant UWB Digital Transmitter with Reconfigurable Pulse-Shaping in 28nm CMOS //2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). – IEEE, 2022. – P. 99-102.

11. Ge L., Yue G., Affes S. On the BER performance of pulse-position-modulation UWB radio in multipath channels //2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No. 02EX580). – IEEE, 2002. – P. 231-234.

12. August N. J., Thirugnanam R., Ha D. S. An adaptive UWB modulation scheme for optimization of energy, BER, and data rate //2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No. 04EX812). – IEEE, 2004. – P. 182-186.

13. Li X. et al. The Interval Modulation System For The Ultra-Wideband Vehicular Radar //2006 6th International Conference on ITS Telecommunications. – IEEE, 2006. – P. 282-285.

14. Herceg M., Švedek T., Matić T. Pulse interval modulation for ultra-high speed IR-UWB communications systems //EURASIP Journal on Advances in Signal Processing. – 2010. – V. 2010. – P. 1-8.

15. Niranjayan S., Nallanathan A., Kannan B. Delay tuning based transmit diversity scheme for TH-PPM UWB: Performance with RAKE reception and comparison with multi RX schemes //2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No. 04EX812). – IEEE, 2004. – P. 341-345.

16. Kim S. et al. A selective signal combining scheme for noncoherent UWB systems //2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications. – IEEE, 2008. – P. 313-317.

17. Jin L., Dong X. Integration interval determination in transmitted reference pulse cluster systems for UWB communications //2008 IEEE 68th Vehicular Technology Conference. – IEEE, 2008. – P. 1-5.

18. Jin B. et al. Digital pulse interval modulation for ultra-wideband transmission with energy detection //2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM). – IEEE, 2010. – P. 1-4.

19. Jin B. et al. Pulse interval modulation for UWB communications with energy detection //2011 IEEE 3rd International Conference on Communication Software and Networks. – IEEE, 2011. – P. 66-70.

20. Niemela V., Hämäläinen M., Iinatti J. On IEEE 802.15. 6 UWB symbol length for energy detector receivers' performance with OOK and PPM //2013 7th International Symposium on Medical Information and Communication Technology (ISMICT). – IEEE, 2013. – P. 33-37.

21. Awano J., Tomiki A., Nishikawa H. IR-UWB Study for Intra-Satellite Wireless Communication //2019 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE). – IEEE, 2019. – P. 81-86.

22. Tanaka K., Ikegami T. Non-coherent Detection Study for UWB Transmission and Body Area Network in Interference Environments //2020 14th International Symposium on Medical Information Communication Technology (ISMICT). – IEEE, 2020. – P. 1-5.

23. Kim Y. S., Jang W. M., Nguyen L. Self-encoded TH-PPM UWB system with iterative detection //IEICE transactions on communications. – 2007. – V. 90. – ¹. 1. – P. 63-68.

24. Zhu Q., Zou C., Jia Z. Performance Analysis of Ultra Wideband Communication System with Time-Hopping M-ary Biorthogonal Pulse Position Modulation //2006 First International Conference on Communications and Networking in China. – IEEE, 2006. – P. 1-6.

25. Wu W., Wu Z. Y., Xie W. J. UWB PPM-TH and PAM-DS system with time reversal and its improved solution //2012 IEEE 6th International Conference on Information and Automation for Sustainability. – IEEE, 2012. – P. 332-336.

26. Jayaprakash C. A. A New scheme for Ultra Wideband PPM communication //2019 International Conference on Range Technology (ICORT). – IEEE, 2019. – P. 1-5.

27. Sharma S., Sharma A., Bhatia V. Performance of pulse position modulation using various UWB pulses //2015 IEEE International Advance Computing Conference (IACC). – IEEE, 2015. – P. 650-654.

28. Assanovich B., Lee M. H. Modification of pulse position modulation for high data UWB systems and multi-user communication //15th International Conference on Microwaves, Radar and Wireless Communications (IEEE Cat. No. 04EX824). – IEEE, 2004. – V. 3. – P. 1024-1027.

29. Niranjayan S., Nallanathan A., Kannan B. An adaptive transmit diversity scheme based on spatial signal combining for TH-PPM UWB //Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications-Programme and Book of Abstracts (IEEE Cat. No. 04TH8738). – IEEE, 2004. – P. 150-154.

30. Abou-Rjeily C. Unitary space-time pulse position modulation for differential unipolar MIMO IR-UWB communications //IEEE Transactions on Wireless Communications. – 2015. – V. 14. – ¹. 10. – P. 5602-5615.

31. Pulkkinen M. et al. 45.2% Energy efficiency improvement of UWB IR Tx by use of differential PPM in 180nm CMOS //2016 IEEE International Symposium on Circuits and Systems (ISCAS). – IEEE, 2016. – P. 193-196.

32. HAMIL H. et al. Design and FPGA real-time implementation of PWM and PPM modulation for Ultra Wide Band applications //2019 6th International Conference on Image and Signal Processing and their Applications (ISPA). – IEEE, 2019. – P. 1-5.

33. Kaluarachi E. D., Ghassemlooy Z., Wilson B. Digital pulse interval modulation for optical free space communication links //IEE Colloquium on Optical Free Space Communication Links. – IET, 1996. – P. 3/1-3/5.

34. Ghassemlooy Z. et al. Digital pulse interval modulation for optical communications //IEEE Communications Magazine. – 1998. – V. 36. – ¹. 12. – P. 95-99.

35. Ghassemlooy Z., Hayes A. R. Digital pulse interval modulation for IR communication systems–a review //International Journal of Communication Systems. – 2000. – V. 13. – ¹. 78. – P. 519-536.

36. Ghassemlooy Z., Aldibbiat N. M. Multilevel digital pulse interval modulation scheme for optical wireless communications //2006 International Conference on Transparent Optical Networks. – IEEE, 2006. – V. 3. – P. 149-153.

37. Rouissat M., Borsai A. R., Chikh-Bled M. Isochronous and anisochronous modulation schemes in wireless optical communication systems //Int. J. Inf. Eng. Electron. Bus. – 2012. – V. 4. – ¹. 3. – P. 19-25.

38. Sushchik M. et al. Chaotic pulse position modulation: A robust method of communicating with chaos //IEEE Communications Letters. – 2000. – V. 4. – ¹. 4. – P. 128-130.

39. Rulkov N. F. et al. Digital communication using chaotic-pulse-position modulation //IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. – 2001. – V. 48. – ¹. 12. – P. 1436-1444.

40. Onunkwo U., Li Y. On the optimum pulse-position modulation index for ultra-wideband communication //Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication (IEEE Cat. No. 04EX710). – IEEE, 2004. – V. 1. – P. 77-80.

41. Yang H., Jiang G. Delay-variable synchronized chaotic pulse position modulation for ultra-wide bandwidth communication //2006 International Conference on Communications, Circuits and Systems. – IEEE, 2006. – V. 4. – P. 2692-2694.

42. Hong Y. P., Jin S. Y., Song H. Y. Coded N-ary PPM UWB impulse radio with chaotic time hopping and polarity randomization //2007 3rd International Workshop on Signal Design and Its Applications in Communications. – IEEE, 2007. – P. 252-256.

43. Munirathinam R. et al. Chaotic Non-Coherent Pulse Position Modulation Based Ultra-Wideband Communication System //2021 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). – IEEE, 2021. – P. 1-6.

44. Quyen N. X., Van Yem V., Hoang T. M. Chaotic modulation based on the combination of CPPM and CPWM //Proceedings of the Joint INDS'11 & ISTET'11. – IEEE, 2011. – P. 1-6.

45. Quyen N. X. et al. Digital communication using MxN-ary chaotic pulse width-position modulation //The 2012 International Conference on Advanced Technologies for Communications. – IEEE, 2012. – P. 362-366.

46. Mesloub A. et al. Chip averaging chaotic ON–OFF keying: A new non-coherent modulation for ultra wide band direct chaotic communication //IEEE Communications Letters. – 2017. – V. 21. – ¹. 10. – P. 2166-2169.

47. Maali A. et al. An enhanced pulse position modulation (ppm) for both ir-uwb and dcc-uwb communication //2019 13th European Conference on Antennas and Propagation (EuCAP). – IEEE, 2019. – P. 1-5.

48. Yao Z. J. et al. Non-crosstalk real-time ultrasonic range system with optimized chaotic pulse position-width modulation excitation //2008 IEEE Ultrasonics Symposium. – IEEE, 2008. – P. 729-732.

49. Zhang L. et al. A new pulse modulation method for underwater acoustic communication combined with multiple pulse characteristics //2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). – IEEE, 2018. – P. 1-6.

50. Dmitriev A. S., Zakharchenko K. V., Puzikov D. Y. Introduction to the theory of direct chaotic data transmission //Journal of communications technology & electronics. – 2003. – V. 48. – ¹. 3. – P. 293-302.

51. Dmitriev A. S. et al. Active wireless ultrawideband networks based on chaotic radio pulses //Journal of Communications Technology and Electronics. – 2017. – V. 62. – P. 380-388.

52. Dmitriev A. S. et al. Self-organizing ultrawideband wireless sensor network //2017 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SINKHROINFO). – IEEE, 2017. – P. 1-6.

53. Andreyev Y. V. et al. Qualitative theory of dynamical systems, chaos and contemporary wireless communications //International journal of bifurcation and chaos. – 2005. – V. 15. – ¹. 11. – P. 3639-3651.

54. Molisch A. F. Ultra-wide-band propagation channels //Proceedings of the IEEE. – 2009. – V. 97. – ¹. 2. – P. 353-371.

55. Proakis J. G. Digital communications. – McGraw-Hill, Higher Education, 2008.

56. Dmitriev A. S., Efremova E. V., Rumyantsev N. V. A microwave chaos generator with a flat envelope of the power spectrum in the range of 3–8 GHz //Technical Physics Letters. – 2014. – V. 40. – P. 48-51.

57. Kwon D. H., Kim Y., Chubinsky N. P. A printed dipole UWB antenna with GPS frequency notch function //2005 IEEE Antennas and Propagation Society International Symposium. – IEEE, 2005. – V. 3. – P. 520-523.

 

For citation:

Kuzmin L.V., Efremova E.V., Petrosyan M.M., Itskov V.V. Pulse interval modulation of ultra-wideband chaotic radio pulses: theory and experiment. // Journal of Radio Electronics. – 2023. – ¹. 12. https://doi.org/10.30898/1684-1719.2023.12.20 (In Russian)