Journal of Radio Electronics. eISSN 1684-1719. 2023. 12
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.12.25

DETERMINATION OF THE SHANNON LIMIT
USING SPECIAL PROPERTIES OF AN APPLIED SYSTEM

 

Yu.M. Veshkurtsev1, D.A. Titov2

 

1Institute of Radioelectronics, service and diagnostics,
644077, Russia, Omsk, pr. Mira, 57

2Omsk State Technical University,
644050, Russia, Omsk, pr. Mira, 11

 

 

The paper was received September 29, 2023

 

Abstract. The aim of the paper is to preserve the fundamental nature of the Shannon limit and constraints in the mathematical theory of communication and to find a compromise solution for changing the boundary of the signal-to-noise ratio, at which the probability of errors is minimized, by using the special properties of the applied system, i.e., the modulator and demodulator. In this case, the "ideality" of the applied system according to the Shannon definition is preserved and supplemented by special properties obtained in our time, from the application of the Lyapunov characteristic function and the action of the stochastic resonance effect discovered at the end of the 20th century. Applied system one and applied system two are considered using the results of previous research and the special properties of the systems are identified. The applied systems are adapted to demodulators of signals with varying Lyapunov characteristic function. A new bound on the fundamental Shannon limit is computed. Taking into account the properties of the system, it is proposed to correct the Shannon limit to the value of 17.7 dB when transmitting messages with low error probability.

Key words: stochastic resonance, Lyapunov characteristic function, digital filter, quasi-deterministic signal, digital filter noise immunity.

Corresponding author: Titov Dmitry Anatolievich, dtitov2@yandex.ru

References

1. Shannon, C.A mathematical Theory of communication / C. Shannon // The Bell system technical journal. – 1948. – Vol. 27, no. 3. – P. 379–423.

2. Shannon, C. Communication in the presence of noise / C. Shannon // Proceedings of the IRE. – 1949. – Vol. 37, no. 1. – С. 10–21.

3. Shannon, C. Probability of error for optimal codes in Gaussian channel / C. Shannon // Bell System Technical Journal. – 1959. – Vol. 38, no. 3. – С. 611–656.

4. Теоретические основы цифровой связи [Theoretical foundations of digital communications]: лекции. Раздел 9: Компромиссы при использовании модуляции и кодирования [Tradeoffs when using modulation and encoding]. – URL: https://www.siblec.ru (дата обращения: 25.09.2023).

5. Вешкурцев, Ю.М. Фильтрация в пространстве вероятностей аддитивной смеси нецентрированного квазидетерминированного сигнала и шума [Filtering in the space of probability additive mixture of eccentric quasideterminants signal-to-noise] / Ю.М. Вешкурцев, Н.Д. Вешкурцев, Д.А. Титов // Приборы и системы. Управление, контроль, диагностика. – 2018. – №. 3. – С. 18–23.

6. Anishchenko V.S., Neiman A.B., Moss F., Schimansky-Geier L. Stochastic resonance: noise enhanced order / V.S. Anishchenko, A.B. Neiman, F. Moss, L. Schimansky-Geier. https://doi.org/10.1070/PU1999v042n01ABEH000444 // Physics-Uspekhi (Advances in Physical Sciences). – 1999. – V.169. – №1. – P.7–38.

7.  Klimontovich, Yu.L. What are stochastic filtration and stochastic resonance? / Yu.L. Klimontovich https://doi.org/10.1070/PU1999v042n01ABEH000445 // Physics-Uspekhi (Advances in Physical Sciences). – 1999. – V.169. – №1. – P.39–47.

8. Вешкурцев, Ю.М. Приборостроение на базе характеристической функции случайных процессов [Instrumentation based on the characteristic function of random processes]: моногр. / Ю.М. Вешкурцев, Н.Д. Вешкурцев, Д.А. Титов. – Новосибирск: Сибирская академическая книга, 2018. – 182 с. – ISBN 978-5-4379-0592-0.

9. Вешкурцев, Ю.М. Спектральные характеристики выходных сигналов цифрового фильтра в условиях возникновения стохастического резонанса [Spectral characteristics of the output signals of a digital filter at stochastic resonance] / Ю.М. Вешкурцев, Д.А. Титов, А.С. Табакова // Теория и техника радиосвязи. – 2023. – № 2. – С. 28–37.

10. Вешкурцев, Ю.М. Стохастический резонанс в цифровом фильтре на основе характеристической функции Ляпунова [Stochastic resonance in a digital filter based on the lyapunov characteristic function] / Ю.М. Вешкурцев, Д.А. Титов, А.С. Табакова. https://doi.org/10.30898/1684-1719.2023.6.7 // Журнал радиоэлектроники. – 2023. – №. 6.

11. Вешкурцев, Ю.М. Прикладной анализ характеристической функции случайных процессов [Applied analysis of the characteristic function of random processes]: моногр. / Ю. М. Вешкурцев. – Москва: Радио и связь, 2003. – 204 с. – ISBN 5-256-01705.

12. Вешкурцев, Ю.М. Обобщение теории нового метода модуляции и демодуляции случайного сигнала [Generalization of the theory of a new method of modulation and demodulation of a random signal] / Ю.М. Вешкурцев. https://doi.org/10.30898/1684-1719.2022.12.8 // Журнал радиоэлектроники. – 2022. – №. 12.

For citation:

Veshkurtsev Yu.M., Titov D.A. Determination of the Shannon limit using special properties of an applied system. // Journal of Radio Electronics. – 2023. – №. 12. https://doi.org/10.30898/1684-1719.2023.12.25 (In Russian))