Journal of Radio Electronics. eISSN 1684-1719. 2023. ¹12
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.12.26

 

MODELING OF EXTERNAL INFLUENCE ON THE RESONANCE PROPERTIES OF BULK ANTIFERROMAGNET

Α − Fe2O3 DURING A SPIN-REORIENTATION TRANSITION

 

T.V. Bogdanova1,2, D.V. Kalyabin1,3, A.R. Safin1,3,4, S.A. Nikitov1,2,5

 

1Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009, Moscow, st. Mokhovaya, 11, bldg. 7

2Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudny, Moscow region, Institutsky lane, 9, Dolgoprudny

3Higher School of Economics, 101000, Moscow, st. Myasnitskaya, 20

4National Research University «MPEI», 111250, Moscow, st. Krasnokazarmennaya, 14, building 1

5Saratov National Research State University, 410012, Saratov, st. Bolshaya Cossack, 112k8

 

The paper was received November 30, 2023

 

Abstract. This paper presents a model that explains the influence of external pressure on the resonant frequency of a bulk crystal a–Fe2O3 in an external magnetic field. The dynamics of vectors l and m before and after the Morin temperature TM are considered. The dependences of the resonant frequency on pressure and external magnetic field for the cases  H║(HA z) and H(HA z) are obtained, and the dependences of the magnetic field on pressure are obtained for the lower and upper modes. It was found that when external pressure is applied to the structure, the natural frequency of vibrations of the magnetic sublattices of the antiferromagnet increases significantly. The results obtained can be used in the development of devices for generating and processing signals in the gigahertz and terahertz frequency ranges.

Key words: terahertz radiation, spin-reorientation transition, antiferromagnet, pressure.

Financing: The work was carried out within the framework of the state assignment of the Kotelnikov Institute of Radio Engineering and Electronics Russian Academy of Sciences.

Corresponding author: Bogdanova Tatyana Vladimirovna, bogdanova.tv@phystech.edu

References

1. Kruglyak V. V., Demokritov S. O., Grundler D. Magnonics // Journal of Physics D: Applied Physics. – 2010. – V. 43. – ¹. 26. – P. 264001.

2. Nikitov S. A. et al. Magnonics: a new research area in spintronics and spin wave electronics // Physics-Uspekhi. – 2015. – V. 58. – ¹. 10. – P. 1002.

3. Nikitov S. A. et al. Dielectric magnonics: from gigahertz to terahertz // Physics-Uspekhi. – 2020. – V. 63. – ¹. 10. – P. 945.

4. Xiong D. et al. Antiferromagnetic spintronics: An overview and outlook // Fundamental Research. – 2022. – V. 2. – ¹. 4. – P. 522-534.

5. Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics // Journal of physics and chemistry of solids. – 1958. – V. 4. – ¹. 4. – P. 241-255.

6. Moriya T. New mechanism of anisotropic superexchange interaction // Physical Review Letters. – 1960. – V. 4. – ¹. 5. – P. 228.

7. Tiercelin N. et al. From non-linear magnetoacoustics and spin reorientation transition to magnetoelectric micro/nano-systems // Spintronics X. – SPIE, 2017. – V. 10357. – P. 102-110.

8. Khymyn R., Tiberkevich V., Slavin A. Antiferromagnetic spin current rectifier // AIP Advances. – 2017. – V. 7. – ¹. 5.

9. Ãîìîíàé Å. Â., Ëîêòåâ Â. Ì. Ñïèíòðîíèêà àíòèôåððîìàãíèòíûõ ñèñòåì (Îáçîð) // Ôèçèêà íèçêèõ òåìïåðàòóð. – 2014. – ¹. 40,¹ 1. – Ñ. 422-47.

10. Safin A. et al. Electrically tunable detector of THz-frequency signals based on an antiferromagnet // Applied Physics Letters. – 2020. – V. 117. – ¹. 22.

11. Jia C. et al. Chiral logic computing with twisted antiferromagnetic magnon modes // npj Computational Materials. – 2021. – V. 7. – ¹. 1. – P. 101.

12. Buchelnikov V. D., Dolgushin D. M., Bychkov I. V. The peculiarities of coupled electromagnetic and magnetoelastic waves in antiferromagnets // Journal of magnetism and magnetic materials. – 2006. – V. 305. – ¹. 2. – P. 470-474.

13. Gareeva Z. V., Doroshenko R. A. Thickness-shear modes and magnetoelastic waves in a longitudinally magnetized ferromagnetic plate // Journal of magnetism and magnetic materials. – 2008. – V. 320. – ¹. 18. – P. 2249-2251.

14. Dai T., Kalyabin D. V., Nikitov S. A. Hypersonic magnetoelastic waves in inhomogeneous structures // Ultrasonics. – 2022. – V. 121. – P. 106656.

15. Khitun A., Bao M., Wang K. L. Magnetic cellular nonlinear network with spin wave bus // 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010). – IEEE, 2010. – P. 1-5.

16. Tiercelin N. et al. From non-linear magnetoacoustics and spin reorientation transition to magnetoelectric micro/nano-systems // Spintronics X. – SPIE, 2017. – V. 10357. – P. 102-110.

17. Turov E. A. Kinetic, Optical, and Acoustic Properties of Antiferromagnets // Izd. Ural. Otd. Akad. Nauk, Sverdlovsk. – 1990.

18. Özgür Ü., Alivov Y., Morkoç H. Microwave ferrites, part 1: fundamental properties // Journal of materials science: Materials in electronics. – 2009. – V. 20. – P. 789-834.

19. Harris V. G. Modern microwave ferrites // IEEE Transactions on Magnetics. – 2011. – V. 48. – ¹. 3. – P. 1075-1104.

20. Morin F. J. Electrical Properties of α Fe 2 O 3 and α Fe 2 O 3 Containing Titanium // Physical Review. – 1951. – V. 83. – ¹. 5. – P. 1005.

21. Moriya T. Anisotropic superexchange interaction and weak ferromagnetism // Physical review. – 1960. – V. 120. – ¹. 1. – P. 91.

22. Ellis D. S. et al. Magnetic states at the surface of α− Fe 2 O 3 thin films doped with Ti, Zn, or Sn // Physical Review B. – 2017. – V. 96. – ¹. 9. – P. 094426.

23. Dikshtein I. E., Salk S. H. S. Nonlinear self-localized magnetoelastic surface waves in antiferromagnetic media // Physical Review B. – 1996. – V. 53. – ¹. 22. – P. 14957.

24. Ozhogin V. I., Preobrazhenskiĭ V. L. Anharmonicity of mixed modes and giant acoustic nonlinearity of antiferromagnetics // Soviet Physics Uspekhi. – 1988. – V. 31. – ¹. 8. – P. 713.

25. Andreev A. F., Marchenko V. I. Symmetry and the macroscopic dynamics of magnetic materials // Soviet Physics Uspekhi. – 1980. – V. 23. – ¹. 1. – P. 21.

26. Äèêøòåéí È. Å., Òàðàñåíêî Â. Â., Øàâðîâ Â. Ã. Âëèÿíèå äàâëåíèÿ íà ðåçîíàíñíûå ñâîéñòâà îäíîîñíûõ ôåððî-è àíòèôåððîìàãíåòèêîâ // ÔÒÒ. – 1974. – Ò. 16. – ¹. 8. – Ñ. 2192.

27. Maksimenkov P. P., Ozhogin V. I. Antiferromagnetic resonance investigation of the magnetoelastic interaction in hematite // Soviet Journal of Experimental and Theoretical Physics. – 1974. – V. 38. – P. 324.

For citation:

Bogdanova T.V., Kalyabin D.V., Safin A.R., Nikitov S.A. Modeling of external influence on the resonance properties of bulk antiferromagnet α − Fe2O3 during a spin-reorientation transition // Journal of Radio Electronics. – 2023. – ¹12. https//doi.org/10.30898/1684-1719.2023.12.26 (In Russian)