Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹12

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.12.1

 

 

PREDICTION OF THE NOISE IMMUNITY OF THE COSPAS-SARSAT SATELLITE SYSTEM

BASED ON THE RESULTS OF GPS-MONITORING

OF SMALL-SCALE IONOSPHERIC DISTURBANCES

 

V.P. Pashintsev 1., V.V. Kopytov 1, D.A. Mikhailov 1, I.A. Boychenko 2, P.A. Diptan 1

1North Caucasian Federal University, 355017, Stavropol, Pushkin str., 1

2Àctionary Society "Central Research Institute of Mechanical Engineering",
141070, Korolev, Moscow region, Pionerskaya str., 4

 

The paper was received November 20, 2024.

 

Abstract. A method for predicting the interference immunity of the satellite system Cospas-Sarsat under conditions of small-scale ionospheric disturbances has been developed based on the results of GPS-monitoring of small-scale fluctuations in the total electron content of the ionosphere. Within this method, the problem of developing a technique for determining the dependence of the probability of erroneous signal reception in satellite communication systems on the choice of the carrier frequency and the signal-to-noise ratio at the receiver input, as well as fluctuations in the total electron content of the ionosphere determined by GPS-monitoring methods on the navigation path of radio wave propagation, has been solved. Based on the obtained dependence, the features of the structure and algorithm of the interference immunity prediction complex of the satellite system Cospas-Sarsat based on GPS-monitoring of small-scale fluctuations in the total electron content are justified. These features include that the inclination angle of the radio wave propagation path in the satellite radio line is initially unknown but can be calculated after solving the problem of determining the coordinates of the radio buoy at the receiver of the spacecraft. Furthermore, a hardware and software implementation of the interference immunity prediction complex of the satellite system Cospas-Sarsat based on the results of GPS ionospheric monitoring has been developed. Experimental results have been obtained regarding the change in the probability of erroneous signal reception in the Cospas-Sarsat satellite system during specified signal-to-noise ratios under conditions of small-scale ionospheric disturbances and increasing levels of ionospheric scintillation. Based on this, estimates of the energy reserve have been obtained to ensure an acceptable error probability in the Cospas-Sarsat satellite system for various values of fluctuations in the total electron content of the ionosphere (0.01 TECU; 0.015 TECU; 0.03 TECU) and levels of scintillation index (0.35; 0.55; 0.85). It has been established that to maintain an acceptable level of signal reception error probability during the formation of small-scale ionospheric disturbances over a 4-minute period, accompanied by an increase in the scintillation index to a moderate level (0.55), an increase in the energy reserve of 4.6 dB will be required. In the event of strong scintillations lasting for 20 seconds (at a level of 0.85), it will be necessary to raise the energy reserve of the Cospas-Sarsat satellite system by 13 dB.

Key words: satellite communications, Cospas-Sarsat, noise immunity, ionosphere, total electron content, small-scale fluctuations, GPS-monitoring, scintillation index, energy reserve.

Financing: The research was carried out at the expense of a grant from the Russian Science Foundation ¹ 24-21-00295 (https://rscf.ru/en/project/24-21-00295/).

Corresponding author: Mikhailov Dmitrii Aleksandrovich, mixayloff.dimaaylov@mail.ru

 

References

1. Specification for second-generation COSPAS-SARSAT 406 MHz distress beacons. C/S T.018. Issue 1, 2016. 72 ð.

2. International Cospas-Sarsat Programme. Wikipedia. URL: https://en.wikipedia.org/wiki/International_Cospas-Sarsat_Programme

3. Urlichich YU.M., Makarov YU.F., Selivanov A.S., Nikushkin I.V. i dr. Printsip deistviya i osnovnye kharakteristiki sistemy KOSPAS // T-comm. Telekommunikatsii i transport. 2014. ¹ 4. pp.15-19.

4. Lev E. Nazarov, Dmitry V. Antonov, Vitaly V. Batanov, Andrey S. Zudilin, Vladimir M. Smirnov. Modeli stsintillyatsii signalov pri rasprostranenii po ionosfernym sputnikovym radioliniyam [The scintillation models for signal propagation through sattellite ionospheric channels] // RENSIT. 2019. T. 11. ¹ 1. P 57–64. https://doi.org/10.17725/Rensit.2019.11.057 (In Russia)

5. L. E. Nazarov, V. M. Smirnov. Otsenivanie veroyatnostnykh kharakteristik priema signalov s ispol'zovaniem modelei zamiranii pri rasprostranenii po transionosfernym liniyam [Estimation of signal reception probability characteristics using models of fading transionosphere channels] // Journal of Radio Electronics. 2020. ¹ 11. https://doi.org/10.30898/1684-1719.2020.11.7 (In Russia)

6. Nazarov L. E., Smirnov V. M. Veroyatnostnye kharakteristiki priema signalov s zamiraniem pri rasprostranenii po sputnikovym ionosfernym radioliniyam [The Error-Performances of Fading Signals Propagated Through the Ionospheric Satellite Channels] // Fizicheskie osnovy priborostroeniya. 2020. T. 9. ¹ 4(38). P. 18–23. https://doi.org/10.25210/jfop-2004-018023 (In Russia)

7. Pashintsev V.P., Tsimbal V.A., Peskov M.V., Toiskin V.E. Metod GPS-monitoringa melkomasshtabnykh neodnorodnostei ionosfery i ego primenenie dlya prognoza pomekhoustoichivosti sistem sputnikovoi svyazi [The method of GPS monitoring of small-scale ionospheric inhomogeneities and its application for predicting the noise immunity of satellite communication systems] // Radiotekhnika. 2023. T. 87. ¹ 10. P. 131-146. https://doi.org/10.18127/j00338486-202310-14 (In Russia)

8. V. Pashintsev, M. Peskov, D. Mikhailov, M. Senokosov, D. Solomonov. Method for GPS-Monitoring of Small-Scale Fluctuations of the Total Electron Content of the Ionosphere for Predicting the Noise Immunity of Satellite Communications // Ionosphere - New Perspectives. Edited by Yann-Henri H. Chemin. London: IntechOpen, 2023. P. 13-33. https://doi.org/10.5772/intechopen.1001096 https://www.intechopen.com/chapters/1131804. ISBN 978-1-83769-537-9.

9. Pashintsev V.P., Peskov M.V., Kalmykov I.A., Zhuk A.P., Toiskin V.E. Method for forecasting of interference immunity of low frequency satellite communication systems // AD ALTA-Journal of interdisciplinary research. 2020. Ò. 10. ¹ 1. P. 367-375, https://www.magnanimitas.cz/currently-published, https://doi.org/10.33543/1001

10. Rino C.L. The Theory of Scintillation with Applications in Remote Sensing. John Wiley & Sons, Hoboken, New Jersey, 2011, 244 p.

11. Gundze E., Chzhaohan' Lju. Mercanija radiovoln v ionosfere. TIIJeR. 1982. T. 70. ¹ 4. S. 5-45. (in Russian).

12. Crane R.K. Ionospheric scintillation // Proceedings of the IEEE. 1977. Ò. 65. ¹ 2. P. 180-199. https://doi.org/10.1109/PROC.1977.10456

13. Bogusch R.L., Gulgliano F. W., Knepp D.L. Frequency-selective scintillation effects end decision feedback equalization in high data-rate satellite links // Proceedings of the IEEE, 1983, vol. 71, N 6. P. 754-767 https://doi.org/10.1109/PROC.1983.12662

14. Maslov O.N., Pashintsev V.P. Modeli transionosfernykh radiokanalov i pomekhoustoichivost' sistem kosmicheskoi svyazi [Models of transionospheric radio channels and noise immunity of space communication systems] // Samara: PGATI, 2006. 357 p. (In Russia)

15. Rytov S.M., Kravtsov YU.A., Tatarskii V.I. Vvedenie v statisticheskuyu radiofiziku. CH. 2 Sluchainye polya. [Introduction to statistical radiophysics. Part 2. Random fields.] // Moscow: Nauka. 1978. 463 p. (In Russia)

16. Dana R.A. Statistics of Sampled Rician Fading. Alexandria, 1993. 61 p. https://doi.org/10.21236/ada212829

17. Simon M.K., Alouini M-S. Digital communication over fading channels: a unified approach to performance Analysis. John Wiley & Sons, Inc. 2000. 546 p. ISBN 0-471-20069-7

18. Tsimbal V.A., Peskov M.V., Chipiga A. F. Pashintsev V.P. Povyshenie tochnosti prognozirovaniya pomekhoustoichivosti sistem sputnikovoi radiosvyazi po dannym monitoringa indeksa ionosfernykh mertsanii [Improving the accuracy of predicting the noise immunity of satellite radio communication systems based on monitoring data of the ionospheric flicker index]// Sb. trudov 23-i Mezhdunar. nauch.-tekhnich. konf. «Radiolokatsiya, navigatsiya, svyaz'». V 2-kh tomakh. T. 2. Voronezh: Izd-vo «Nauchno-issledovatel'skie publikatsiI» (OOO «VEHLBORN»). P. 575-582. (In Russia)

19. Pashintsev V.P., Peskov M.V., Senokosov M.A., Mikhailov D.A., Skorik A.D. A system for measuring the scintillation index based on the results of monitoring of small-scale fluctuations in the total electron content of the ionosphere // GPS Solutions. Vol. 28. Issue 1. 2024. https://doi.org/10.1007/s10291-023-01550-1

20. Pashintsev V.P., Peskov M.V., Smirnov V.M., Smirnova N.V., Tynyankin S.I. Metodika vydeleniya melkomasshtabnykh variatsii polnogo ehlektronnogo soderzhaniya ionosfery po dannym transionosfernogo zondirovaniya [A technique for isolating small-scale variations of the total electron content of the ionosphere based on transionospheric sensing data] // Radiotekhnika i ehlektronika, 2017, T.62, ¹12, P. 1182-1189. https://doi.org/10.7868/S0033849417110158 (In Russia)

21. Zakharov A. I., Yakovlev O. I., Smirnov V. M. Sputnikovyi monitoring Zemli [Satellite monitoring of the Earth] // Radiolokatsionnoe zondirovanie poverkhnosti. M.: KRASAND. 2012. 248 s.

22. Kolosov M. A., Armand N., Yakovlev O. Rasprostranenie radiovoln pri kosmicheskoi svyazi [Propagation of radio waves in space communications] // Moscow, «Svyaz'», 1969. 155 p. (In Russia)

23. Fink L.M. Teoriya peredachi diskretnykh soobshchenii [Theory of transmission of discrete messages] // Moscow: Sov. radio, 1970. – 728 p. (In Russia)

24. AstraLinux [Internet]. ÎÎÎ «ÐóñÁÈÒåõ-Àñòðà»; URL: https://astralinux.ru

25. Docker [Internet]. Docker Inc.; URL: https://www.docker.com/

26. Docker Compose [Internet]. Docker Inc.; URL: https://docs.docker.com/compose/

27. Apache Kafka [Internet]. Apache Software Foundation; URL: https://kafka.apache.org/

28. Apache Spark [Internet]. The Apache Software Foundation; URL: https://spark.apache.org/

29. ClickHouse [Internet]. ClickHouse, Inc. HQ in the Bay Area, CA and Amsterdam, NL.; URL: https://clickhouse.com

30. Grafana [Internet]. Grafana Labs; URL: https://grafana.com/

31. Fremouw E. J. [et el.]. Early results from the DNA Wideband satellite experiment-Complex-signal scintillation // Radio Science. 1978. ¹ 1 (13). P. 167–187.

32. Fremouw EJ, Leadabrand RL, Livingston RC, Cousins MD, Rino CL, Fair BC, Long RA (1978). Early results from the DNA wideband satellite experiment—complex-signal scintillation // Radio Science, 1978, ¹ 1(13), ðð. 167–187. https://doi.org/10.1029/RS013i001p00167

33. Ionospheric propagation data and prediction methods required for the design of satellite services and systems. Recommendation ITU-R P.531-11. Electronic Publication, Geneva, 2012, 24 p.

34. Sklyar B. Tsifrovaya svyaz'. Teoreticheskie osnovy i prakticheskoe primenenie [Digital communication. Theoretical foundations and practical application] // Per. s angl. – Moscow: Izdatel'skii dom «Vil'yamS», 2003. – 1104 p. (In Russia)

35. Penin P.I. Sistemy peredachi tsifrovoi informatsii [Digital information transmission systems] // Moscow: Sov. radio, 1976. – 364 p. (In Russia)

36. Nemirovskii M.S., Lokshin B.A., Aronov D.A. Osnovy postroeniya sistem sputnikovoi svyazi [Fundamentals of building satellite communication systems] // Moscow: Goryachaya liniya – Telekom, 2021, 432 p. (In Russia)

37. Zhuravlev V.I, Rudnev A.N. Tsifrovaya fazovaya modulyatsiya. Monografiya [Digital phase modulation. Monograph] // Moscow: Radiotekhnika, 2012, 208 p. (In Russia)

For citation:

Pashintsev V.P., Kopytov V.V., Mikhailov D.A., Boychenko I.A., Diptan P.A. Prediction of the noise immunity of the Cospas-Sarsat satellite system based on the results of GPS-monitoring of small-scale ionospheric disturbances. // // Journal of Radio Electronics.  – 2024. – ¹. 12. https://doi.org/10.30898/1684-1719.2024.12.1 (In Russian)