Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹12

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.12.20

 

 

 

ESTIMATION OF ATMOSPHERIC TURBULENCE PARAMETERS
FOR THE STANDARD ATMOSPHERIC MODEL

 

V.V. Akhiyarov1, E.A. Ishchenko2

 

1Long Range Radar, JSC
127083, Russia, Moscow, 8 March str., 10, b.5

2Voronezh State Technical University
394006, Russia, Voronezh, 20 letiya Oktyabrya st., 84

 

The paper was received November 1, 2024.

 

Abstract. In this work, estimates of the main turbulence parameters in the surface layer up to 25 m and in the entire thickness of the troposphere up to a height of ~10 km are obtained for a standard atmospheric model. It is shown that the refractive index structure parameter CN2 in the radio and optical ranges differ approximately fifty times near the ground. It is obtained that using the standard model of the atmosphere, the value of CN2 remains approximately constant up to a height of several hundred meters, which corresponds to the results of long-term (within a year) instrumental measurements. The refractive index fluctuations variance is estimated and it is shown that using it, the range of field strength prediction near the ground can be increased approximately ten times compared to the case of absence fluctuations.

Key words: standard model of the atmosphere, International Telecommunication Union recommendations, refractive index structure parameter, variance of refractive index fluctuations, long-range tropospheric propagation of radio waves, parabolic equation method.

Financing: This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation under the state assignment «youth laboratory» ¹ FZGM-2024-0003.

Corresponding author: Akhiyarov Vladimir Vlerovich, vakhiyarov@gmail.com

References

1. Recommendation ITU-R P.835-6. Reference standard atmospheres. https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.835-6-201712-I!!PDF-E.pdf.

2. Recommendation ITU-R P.1546-6. Method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 4000 MHz. https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.1546-6-201908-I!!PDF-.pdf.

3. Tatarskii V.I. Rasprostranenie radiovoln v turbulentnoj atmosfere. [Wave propagation in turbulent media]. Moscow, Nauka. 1967. (In Russian).

4. Obukhov A.M. Turbulentnost' i dinamika atmosfery. [Turbulence and atmospheric dynamics]. – Gidrometeoizdat, 1988. (In Russian).

5. Vorontsov P.A. Turbulentnost' i vertikal'nye toki v pogranichnom sloe atmosfery. [Turbulence and vertical currents in the atmospheric boundary layer]. – Gidrometeoizdat, 1966. (In Russian).

6. Burk S.D. Refractive index structure parameters: Time-dependent calculations using a numerical boundary-layer model //Journal of Applied Meteorology and Climatology. – 1980. – Vol. 19. – No. 5. – P. 562-576.

7. Molina-Garcia A. et al. Vertical wind profile characterization and identification of patterns based on a shape clustering algorithm //IEEE Access. – 2019. – Vol. 7. – P. 30890-30904.

8. Tunick A. CN2 model to calculate the micrometeorological influences on the refractive index structure parameter //Environmental Modelling & Software. – 2003. – Vol. 18. – No. 2. – P. 165-171.

9. Sreenivasan K.R. The passive scalar spectrum and the Obukhov–Corrsin constant //Physics of Fluids. – 1996. – Vol. 8. – No. 1. – P. 189-196.

10. Srivastava M.K., Sarthi P.P. Turbulent kinetic energy in the atmospheric surface layer during the summer monsoon //Meteorological Applications. – 2002. – Vol. 9. – No. 2. – P. 239-246.

11. Smalikho I.P. et al. Determination of the turbulent energy dissipation rate from data measured by a “Stream Line” lidar in the atmospheric surface layer //Optika Atmosfery i Okeana. – 2015. – Vol. 28. – No. 10. – P. 901-905.

12. Lukin V.P., Nosov E.V., Fortes B.V. The efficient outer scale of atmospheric turbulence //Astronomy with adaptive optics: present results and future programs, Proceedings of an ESO/OSA topical meeting, held September 7-11, 1998, Sonthofen, Germany, Publisher: Garching, Germany: European Southern Observatory, 1999, ESO Conference and Workshop Proceedings, vol. 56, Edited by Domenico Bonaccini, p. 619. – 1999. – Vol. 56. – P. 619.

13. Recommendation ITU-R P. 453-12. The radio refractive index, its formula and refractivity data. https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.453-12-201609-S!!PDF-E.pdf.

14. Marzano F.S. et al. Clear-air turbulence effects modeling on terrestrial and satellite free-space optical channels //2015 4th International Workshop on Optical Wireless Communications (IWOW). – IEEE, 2015. – P. 36-40.

15. Belu R.R., Jumper G. Comparison of the refractive index structure constant prediction using radiosonde data to in-situ thermosonde measurements //2012 9th international conference on communications (comm). – IEEE, 2012. – Ñ. 147-150.

16. Grabner M. et al. Vertical dependence of refractive index structure constant in lowest troposphere //IEEE Antennas and Wireless Propagation Letters. – 2011. – Vol. 10. – P. 1473-1475.

17. Ben-Yosef N. et al. Refractive-index structure constant dependence on height //JOSA. – 1979. – Vol. 69. – No. 11. – P. 1616-1618.

18. Recommendation ITU-R P.1621-2. Propagation data required for the design of Earth-space systems operating between 20 THz and 375 THz. https://itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.1621-2-201507-I!!PDF-E.pdf.

19. Coulman C.E. et al. Outer scale of turbulence appropriate to modeling refractive-index structure profiles //Applied optics. – 1988. – Vol. 27. – No. 1. – P. 155-160.

20. Kermarrec G., Schön S. On the determination of the atmospheric outer scale length of turbulence using GPS phase difference observations: the Seewinkel network //Earth, Planets and Space. – 2020. – Vol. 72. – P. 1-16.

21. Andrews L.C. et al. Atmospheric channel characterization for ORCA testing at NTTR //Atmospheric and Oceanic Propagation of Electromagnetic Waves IV. – SPIE, 2010. – Vol. 7588. – P. 80-91.

22. Xu M. et al. Analysis of the optical turbulence model using meteorological data //Remote Sensing. – 2022. – Vol. 14. – No. 13. – P. 3085.

23. Eaton F.D. et al. Comparisons of VHF radar, optical, and temperature fluctuation measurements of Cn2, r0 and θ0 //Theoretical and applied climatology. – 1988. – Vol. 39. – P. 17-29.

24. Isimaru À. Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh. [Wave propagation and scattering in randomly inhomogeneous media]. – Mir, 1981. – Vol. 2. (In Russian).

25. Akhiyarov V.V. Forecast of long-range tropospheric radio wave propagation using the recommendation of International Telecommunication Union // Radiolokacija, navigacija, svjaz' [«Radiolocation, navigation, communication»]. – 2023. – P. 255-262. (In Russian).

26. Akhiyarov V.V. et al. Determination of the dispersion of refractive index fluctuations for the standard atmosphere // Rasprostranenie radiovoln [Radio wave propagation]. – 2023. – P. 479-482. (In Russian).

27. Akhiyarov V.V. Diffraction of the VHF and UHF radiowaves above the earth’s surface //Jelektromagnitnye volny i jelektronnye sistemy [Electromagnetic waves and electronic systems]. – 2006. – Vol. 11. – No. 9. – P. 28-33. (In Russian).

28. Akhiyarov V.V. Waves Propagation and Scattering //Uspehi sovremennoj radiojelektroniki [Achievements of modern radioelectronics]. – 2008. – No. 12. – P. 3-25. (In Russian).

29. Akhiyarov V.V. Calculation of the attenuation factor near terrain taking into account tropospheric scatter //Radiolokacija, navigacija, svjaz' [«Radiolocation, navigation, communication»]. – 2021. – P.193-199. (In Russian).

30. Akhiyarov V.V. Modeling of tropospheric radio wave propagation by the parabolic equation method //Jhurnal radioelectroniki [Journal of Radioelectronics]. – 2022. – No. 1. http://jre.cplire.ru/jre/jan22/6/text.pdf. (In Russian).

31. Akhiyarov V.V. Scattering from statistically rough surface with arbitrary correlation properties //Jhurnal radioelectroniki [Journal of Radioelectronics]. – 2012. – ¹. 2. http://jre.cplire.ru/jre/feb12/2/text.pdf. (In Russian).

32. Akhiyarov V.V. Modeling of refractive index fluctuations to predict the field strength near the ground //Radiolokacija, navigacija, svjaz' [«Radiolocation, navigation, communication»]. – 2022. – P. 174-179. (In Russian).

33. Akhiyarov V.V., Chernavskiy S.V. Usage of Numerical Methods for the Radio Waves Propagation Studying // Radiotehnika [Radioengineering]. – 2011. – No. 10. – P. 100-110. (In Russian).

34. Akhiyarov V.V. Path loss prediction over irregular terrains based on parabolic equation //Jhurnal radioelectroniki [Journal of Radioelectronics]. – 2012. – No. 1. http://jre.cplire.ru/jre/jan22/6/text.pdf. (In Russian).

35. Akhiyarov V.V. Solving diffraction problems by parabolic equation method //Jelektromagnitnye volny i jelektronnye sistemy [Electromagnetic waves and electronic systems]. – 2012. – Vol. 17. – No. 11. – P. 24-30. (In Russian).

 

For citation:

Akhiyarov V.V., Ishchenko E.A. Estimation of atmospheric turbulence parameters for the standard atmospheric model. // Journal of Radio Electronics. – 2024. – ¹. 12. https://doi.org/10.30898/1684-1719.2024.12.20 (In Russian)