Journal of Radio Electronics. eISSN 1684-1719. 2024. №12

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.12.6

 

 

INFLUENCE OF STRONG LOCAL ATMOSPHERIC DISTURBANCE

ON THE NEAR FIELD STRENGTH OF A LOW-FREQUENCY LOOP

ANTENNA LOCATED IN THE EARTH'S IONOSPHERE

 

A.V. Moshkov

 

 

Kotelnikov IRE RAS

125009, Russia, Moscow, Mokhovaya str., 11, b.7

 

The paper was received August 15, 2024.

 

Abstract. A low-frequency loop antenna located in the ionosphere can be an effective diagnostic tool for determining the parameters of strong local atmospheric disturbances. The source of such disturbances can be the intrusion of meteoroids into the atmosphere. The input impedance of the loop antenna in the ionosphere weakly depends on the parameters of the surrounding magnetoactive plasma, so even a relatively strong disturbance of the environment does not disrupt the matching of the loop with the transmitter. The article presents the results of numerical calculations of the time dependence of the near electric field strength of a loop antenna located in the ionosphere in the frequency range of 1...10 kHz. The parameters of the ionospheric plasma (ionization value, temperature, effective frequency of electron collisions) change in time under the influence of a strong local disturbance emerging in the atmosphere. It is shown that as the disturbance region approaches the antenna, the magnitude of the field strength deviates significantly from the background values, first in the direction of increase, and then in the direction of decrease, down to a value of the order of the field strength of such an antenna in free space. The duration of these disturbances of the field strength is in the range from 15 to 30 s with a change in the initial energy of the atmospheric disturbance from 1 to 10 PJ.

Key words: low frequencies, lower ionosphere, strong local disturbance, enhanced ionization, loop antenna.

Financing: the work was carried out on the topic of the state assignment of the Kotelnikov IRE RAS No. FFWZ-2022-0014.

Corresponding author: Moshkov Aleksandr Vladimirovich, kuzaf@inbox.ru)

 

 

References

1. Helliwell R.A., Katsufrakis J.P., Trimpi M. Whistler-induced amplitude perturbation in VLF propagation // J. Geophysical Research. – 1973. – Vol. 78. – No. 22. – P. 4679-4688. – https://doi.org/10.1029/JA078I022P04679

2. Бронштэн В.А. Физика метеорных явлений [Physics of meteor phenomena]. – Москва: Наука, 1981. – 416 c. (In Russian).

3. Акиндинов В.В., Еремин С.М., Лишин И.В. Антенны низкой частоты в магнитоактивной плазме (обзор) [Low Frequency Antennas in Magnetoactive Plasma (Review)] // Радиотехника и электроника. – 1985. – Т. 30. – № 5. – С. 833-850. (In Russian).

4. Koons H.C., Dazey M.N., Edgar B.C. Impedance Measurements on a VLF Multiturn Loop Antenna in a Space Plasma Simulation Chamber // Radio Sci. – 1984. – Vol. 19. – No. 1. – P. 395-399. – https://doi.org/10.1029/RS019i001p00395

5. Арманд Н.А., Семенов Ю.П., Черток Б.Е. и др. Экспериментальное исследование в ионосфере Земли излучения рамочной антенны в диапазоне очень низких частот, установленной на орбитальном комплексе «Мир-Прогресс-28-Союз ТМ-2» [Experimental study of the Earth's ionosphere radiation of a frame antenna in the very low frequency range, installed on the Mir- Progress-28-Soyuz TM-2 orbital complex] // Радиотехника и электроника. – 1988. – Т. 33. – № 11. – С. 2225-2233. (In Russian).

6. Lukin D.S., Presniakov V.B., Savtchenko P.P. The Calculation of Wave Field in the Near-Zone of the Loop VLF Radiator in the Uniform Magnetoplasma // Geomagnetism and Aeronomy. – 1988. – Vol. 27. – No. 2. – P. 262-267.

7. Moshkov A.V., Pozhidaev V.N. Numerical Simulation of the Distribution of the Low-Frequency Field Created by a Transmitting Loop Antenna Installed on board a Spacecraft // J. Communications Technology and Electronics. – 2019. – Vol. 64. – No. 9. – P. 937-944. – https://doi.org/10.1134/S1064226919080126

8. Moshkov A.V., Pozhidaev V.N. Propagation of high-frequency radio waves in the presence of a strong local ionospheric disturbance // J. Communications Technology and Electronics. – 2013. – Vol. 58. – No. 4. – P. 277-283. – https://doi.org/10.1134/S1064226913040128

9. Stix T.H. The Theory of Plasma Waves. – New York: McGraw-Hill, 1962. – 283 p.

10. Фаткуллин M.H., Зеленова Т.И., Козлов В.К. и др. Эмпирические модели среднеширотной ионосферы [Empirical models of the midlatitude ionosphere]. – Москва: Наука, 1981. – 256 с. (In Russian).

11. Ginzburg V.L. The Propagation of Electromagnetic Waves in Plasmas. – Pergamon Press, 1970. – 615 p.

12. Moshkov A.V. Estimation of the Fade Duration of Low-Frequency Radio Waves in the Earth-Ionosphere Waveguide under the Action of a Strong Local Perturbation in the Atmosphere // J. of Communications Technology and Electronics. – 2022. – Vol. 67. – No. 11. – P. 1374-1378. – https://doi.org/ 10.1134/S1064226922110109

For citation:

Moshkov A.V. Influence of strong local atmospheric disturbance on the near field strength of a low-frequency loop antenna located in the Earth's ionosphere // Journal of Radio Electronics. – 2024. – №. 12. https://doi.org/10.30898/1684-1719.2024.12.6 (In Russian)