"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 2, 2019

contents of issue      DOI  10.30898/1684-1719.2019.2.9     full text in Russian (pdf)  

Experimental study of the surface properties of lipid monolayers regarded as biological membranes

K. D. Kazarinov 1, A. S. Titov 2, V. S. Malinin 1, S.V. Titov 1

1 Fryazino Branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Vvedensky Sq.1, Fryazino Moscow region 141190, Russia

2 Moscow Institute of Physics and Technology (State University),  9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russian Federation 


The paper is received on February 12, 2019


Abstract. Experimental work on a novel method for the study of the surface properties of lipid monolayers is reported, based on recording the wavelength and attenuation of surface acoustic waves so permitting the determination of both the surface tension and surface viscosity of a monolayer. The capillary wave acts as a measuring probe for determining monolayer properties. Measurements on L-α-lecithin monolayers indicate that the acoustic wave method is an effective tool for investigating surface properties of lipid monolayers exposed to microwaves. Knowledge of the surface properties of lipid monolayers also allows the determination of their energetic and mechanical parameters and also the area of single molecules bounding a monolayer. These parameters are important for understanding the structure and function of lipid bilayers in biological entities allowing investigation of both the characteristic features of the structure and the functioning of biomembranes under various pathological conditions thereby yielding an additional option for rapidly obtaining diagnostic data so facilitating the identification of many diseases in their early stages. Capillary wave recording has been used in a series of experiments and preliminary results of these indicate a decrease in the surface tension of the sample by an average of 5% over the entire range of lipid concentrations.

Key words: capillary wave generation method, surface properties of lipid monolayers, pulmonary surfactant, models of biological membranes, wavelength and attenuation of surface waves, microwave irradiation.


1.            Ordynskaya T.A., Poruchikov P.V., Ordynskii V.F. Volnovaya terapiya [Wave therapy]. Moscow, Eksmo Publ., 2008. 496 p. (In Russian).

2.            Myrzabaeva N.A. Application of laser and EHF-puncture in eradication therapy of patients with functional dyspepsia associated with Helicobacter pylori. Terapevticheskii vestnik - Therapeutic Bulletin. 2009. No 4(24). pp. 48-49. Available at: http://www.gastroscan.ru/literature/authors/4428 (In Russian).

3.            Teppone M., Avakyan R. Extremely high-frequency therapy in oncology. J Alternative and Complementary Medcine. 2010. Vol. 16(11). pp. 1211-1216. DOI https://doi.org/10.1089/acm.2009.0208

4.            Szabo I., Kappelmayer J., Alekseev S.I., Ziskin M.C. Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro. Bioelectromagnetics. 2006. Vol. 27. pp. 233-244. DOI https://doi.org/10.1002/bem.20202

5.            Kazarinov K.D. The study of the membranotropic activity of electromagnetic radiation in a wide range of wavelengths. Elektronnaya tehnika Electronic engineering, Ser. 1. VHF-technique, 2018. No 2 (537). pp. 62-75. Available at: http://www.istokmw.ru/uploads/files/static/101/UHF2018-2.pdf (In Russian).

6.            Titov S.V., Malinin V.S., Titov A.S., Kazarinov K.D. On the calculation of parameters for the generation of waves in liquid medium. Zhurnal radioelectroniki - Journal of radio electronics. 2019, No 1. Available at: http://jre.cplire.ru/jre/jan19/6/text.pdf

7.            Titov S.V., Malinin V.S., Titov A.S., Kazarinov K.D. Studies of the surface properties of lipid monolayers as models of biological membranes. Zhurnal radioelectroniki - Journal of radio electronics. 2018, No 10. Available at: http://jre.cplire.ru/jre/oct18/13/text.pdf

8.            Gains G.L., Jr. Insoluble monolayers at liquid-gas interfaces. N.Y.: Interscience Publ. 1966. 386 p. Available at: https://searchworks.stanford.edu/view/699189

9.            MacDonald R.C., Simon S.A. Lipid monolayer states and their relationship to bilayers. Proc. Natl. Acad. Sci. USA. 1987. Vol. 84. pp. 4089-4093. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC305028/

10.       Berezovskii V.A., Gorchakov V.Yu. Poverhnostno-aktivnye veschestva legkogo [Surface-active substances of the lung]. Kiev, Naukova Dumka Publ. 1982. 168 p. (In Russian).

11.       van Golde L.M.G., Batenburg J.J., Robertson . The Pulmonary Surfactant System. News Physiol. Sci. 1994. Vol. 9. pp. 13-20. DOI: https://doi.org/10.1152/physiologyonline.1994.9.1.13

12.       Yu S.H., Possmayer F., Adsorption, Compression and Stability of Surface Films from Natural, Lipid Extract and Reconstituted Pulmonary Surfactants. Biochim. Biophys. Acta. 1993. Vol. 1167. pp. 264-271. Available at: https://www.ncbi.nlm.nih.gov/pubmed/8481387

13.       Novgorodtseva T.P. Lipidomics in medicine-biological researchers of the Institute of Medical Climatology and Rehabilitative Treatment SB RAMS. Zdorove. Medetsinskaya ekologiya. Nauka. Health. Medicine ecology. Science. 2009. No. 4-5 (39-40). pp. 133-137. Available at: https://cyberleninka.ru/article/v/lipidomika-v-mediko-biologicheskih-issledovaniyah-nii-meditsinskoy-klimatologii-i-vosstanovitelnogo-lecheniya (In Russian)


For citation:

K. D. Kazarinov, A. S. Titov, V. S. Malinin, S.V. Titov. Experimental study of the surface properties of lipid monolayers regarded as biological membranes. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 2. Available at http://jre.cplire.ru/jre/feb19/10/text.pdf

DOI  10.30898/1684-1719.2019.2.10