Journal of Radio Electronics. eISSN 1684-1719. 2025. №2

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.2.1

 

 

 

PHASE DIAGRAM OF TWO-SUBLATTICE FERRIMAGNETIC

WITH COMPENSATION POINT

IN PRESENCE OF UNIAXIAL ANISOTROPY

 

D.A. Suslov, V.G. Shavrov, V.I. Shcheglov

 

Institute of Radio Engineering and Electronics RAS,

125009, Russia, Moscow, st. Mokhovaya, 11 b.7

 

The paper was received November 5, 2024.

 

Abstract. In geometry of axial symmetry along the constant field the dependency of two-sublattice magnetization ferrimagnetic from field is investigated. On the base of whole energy solidity minimization it is found the phase diagram of material in whole. It is proposed the numerical algorithm of construction of lower branch of diagram which consist of three stage on the first of its varied the sublattice magnetization orientation, on the second varied field and on the third varied temperature. In connection with this algorithm it is founded the dependence of field transfer from collinear anti-parallel phase to angle phase in broad temperature interval. It is shown that thr anisotropy field introduction brought to increasing of transfer field from temperature. It is proposed qualitative physical interpretation of above mentioned dependencies which consist of orientational force of anisotropy field along its axis which coincides with inner field direction. It is proposed the methodic which allow about four character points of diagram found the system algebraic equations which couples sublattice magnetization values with character material parameters. With using of this methodic it is made the model determination of sublattice magnetizations in separate with precision of some units percent. It is proposed some recommendations for further investigations.

Keywords: mixed garnet ferrite, compensation temperature, sub-lattice magnetization.

Financing: The work was performed within the framework of the state assignment of the V.A. Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences.

Corresponding author: Shcheglov Vladimir Ignatyevich, vshsheg@cplire.ru

 

References

1. Lax B., Button K.J. Microwave ferrites and ferrimagnetics. New York, San Francisco, Toronto, London: McGraw-Hill Book Company. 1962.

2. Gurevich A.G. Magnetic resonance in ferrites and antiferromagnetics. M.: Nauka. 1973.

3. Gurevich A., Melkov G. Magnetic oscillations and waves. M.: Nauka-Fizmatlit. 1994.

4. Kurushin E.P., Nefedov E.I. Application of thin mono-crystal ferrite films in microwave designs. // Microelectronics. 1977. V.77. №6. P.549-561.

5. Glass H.L. Ferrite films for microwave and millimeter wave devices. // Proc. IEEE. 1988. V.76. №2. P.151-158.

6. Shavrov V.G., Shcheglov V.I. Magnetostatic waves in nonuniform fields. M.: Fizmatlit. 2016.

7. Shavrov V.G., Shcheglov V.I. Magnetostatic and electromagnetic waves in complex structures. M.: Fizmatlit. 2017.

8. Shavrov V.G., Shcheglov V.I. Ferromagnetic resonance in conditions of orientation transition. M.: Fizmatlit. 2018.

9. Shavrov V.G., Shcheglov V.I. Dynamics of magnetization in conditions of its orientation changing. M.: Fizmatlit. 2019.

10. Shavrov V.G., Shcheglov V.I. Spin waves in media with exchange and dissipation. M.: Fizmatlit. 2021.

11. Lisovsky F.V. Physics of bubble domains. M.: Sov. Radio. 1979.

12. Malozemoff A.P., Slonczewski J.C. Magnetic domain walls in bubble materials. Academic Press. New York London Toronto Sydney San Francisco. 1979.

13. Romanova I. Magnetoresistive memory MRAM of company Everspin Technologies. // Electronics STB. 2014. №8.

14. Kirilyuk A., Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order. // Rev. Mod. Phys. 2010. V.82. №3. P.2731.

15. Bigot J.V., Vomir M. Ultrafast magnetization dynamics of nanostructures. // Ann. Phys. (Berlin). 2013. V.525. №1-2. P.2.

16. Vlasov V.S., Golov A.V., Kotov L.N., Shcheglov V.I., Lomonosov A.M., Temnov V.V. The Modern Problems of Ultrafast Magnetoacoustics (Rewiev). // Acoust. Phys. 2022. V.68. №1. P.18-47.

17. Belov K.P., Zaytseva M.A. Rare-earth magnetic materials. // Sov. Phys. Usp. 1972. V106. №2. P.365-369.

18. Belov K.P., Zvezdin A.K., Kadontseva A.M., Levitin R.Z. Transitions of spin re-orientation in rare-earth magnetics. // Sov. Phys. Usp. 1976. V119. №3. P.447-486.

19. Belov K.P., Zvezdin A.K., Kadontseva A.M., Levitin R.Z. Orientational transitions in rare-earth magnetics. M.: Nauka. 1979.

20. Clark A.E., Callen E. Neel ferromagnets in large magnetic fields. // J. Appl. Phys. 1968. V.39. №13. P.5972-5082.

21. Goranskiy B.P., Zvezdin A.K. About turn development of ferrimagnetic sublattices in magnetic field. // JETP Letters. 1969. V.10. P.196-200.

22. Suslov D.A., Shavrov V.G., Shcheglov V.I. The calculation algorithm of sublattice magnetizations in two-lattice ferromagnet with compensation point. Part 1. Phase diagram. // Zhurnal Radioelectroniki – Journal of Radio Electronics. 2024. №5. https://doi.org/10.30898/1684-1719.2024.5.2.

23. Suslov D.A., Shavrov V.G., Shcheglov V.I. The calculation algorithm of sublattice magnetizations in two-lattice ferromagnet with compensation point. Part 2. Power index approximation. // Zhurnal Radioelectroniki – Journal of Radio Electronics. 2024. №5. https://doi.org/10.30898/1684-1719.2024.5.3.

24. Demidovich B.P., Maron I.A. Foundations of computational mathematics. M.: Fizmatgiz. 1963.

 

For citation:

Suslov D.A., Shavrov V.G., Shcheglov V.I. Phase diagram of two-sublattice ferrimagnetic with compensation point in presence of uniaxial anisotropy // Journal of Radio Electronics. – 2025. – № 2. https://doi.org/10.30898/1684-1719.2025.2.1 (In Russian)