Journal of Radio Electronics. eISSN 1684-1719. 2025. №2

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.2.7

 

 

 

MILITARY OBJECTS DETECTION USING A CONVOLUTIONAL
NEURAL NETWORK ON RADAR IMAGES FORMED
IN JAMMING CONDITIONS

 

I.F. Kupryashkin

 

Military Educational and Scientific Center of the Air Force
«N.E. Zhukovsky and Y.A. Gagarin Air Force Academy»,

394064, Russia, Voronezh, Starykh Bolshevikov St., 64

 

The paper was received October 24. 2024.

 

Abstract. The MSTAR objects detection on noised radar images using the YOLOv4-tiny detector results are presented. It has been shown that on a homogeneous background detector work is satisfactory when the signal-to-noise ratio is 10 dB or more, and completely disrupted when the signal-to-noise ratio is less than 0 dB.

Key words: deep convolutional neural network, transfer learning, radar image, classification accuracy, object detection.

Corresponding author: Kupryashkin Ivan Fedorovich, ifk78@mail.ru

References

1. Bao W., Huang M., Zhang Y., Xu Y., Liu X., Xiang X. Boosting ship detection in SAR images with complementary pretraining techniques. ArXiv.  https://arxiv.org/abs/2103.08251

2. Amrani M., Bey A., Amamra A. New SAR Target Recognition Based on YOLO and Very Deep Multi-Canonical Correlation Analysis. ArXiv. https://arxiv.org/abs/2110.15383

3. Kim W., Cho H., Kim J., Kim B., Lee S. YOLO-Based Simultaneous Target Detection and Classification in Automotive FMCW Radar Systems. Sensors. 2020. Vol. 20, 2897. https://doi.org/10.3390/s20102897

4. Chang Y.-L., Anagaw A., Chang L., Wang Y.-C., Hsiao C.-Y., Lee W.-H. Ship Detection Based on YOLOv2 for SAR Imagery. Remote Sensing. 2019. Vol. 11, 786. https://doi.org/10.3390/rs11070786

5. Zhou L., Wei S., Cui Z., Fang J., Yang X., Ding W. Lira-YOLO: a lightweight model for ship detection in radar images. Journal of Systems Engineering and Electronics. 2020. Vol. 31. No. 5. PP.950–956. https://doi.org/10.23919/JSEE.2020.000063. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9215072

6. Cui Z., Tang C., Cao Z., Liu N. D-ATR for SAR Images Based on Deep Neural Networks. Remote Sensing. 2019. Vol. 11, 906. https://doi.org/10.3390/rs11080906

7. Чорбаа Н.А., Ле Ань Ту, Толстой И.М. Сравнительный анализ методов детектирования объектов на радиолокационных изображениях при помощи нейронных сетей. Научный результат. Информационные технологии. 2020. Т.5. №4. С. 15-25. https://doi.org/10.18413/2518-1092-2020-5-4-0-3

8. Gao F., Liu A., Liu K., Yang E., Hussain A. A novel visual attention method for target detection from SAR images. Chinese Journal of Aeronautics. 2019. Vol. 32(8). P. 1946-1958 https://doi.org/10.1016/j.cja.2019.03.021

9.  Chen Y., Duan T., Wang C., Zhang Y., Huang M. End-to-End Ship Detection in SAR Images for Complex Scenes Based on Deep CNNs. Journal of Sensors. Vol. 2021. https://doi.org/10.1155/2021/8893182

10. Wu T.-D., Wang H.-F., Hsu P.-H., Tiong K.-K., Chang L.-C., Chang C.-H. Target Detection and Recognition in Synthetic Aperture Radar Images Using YOLO Deep Learning Methods. 2023 International Conference on Consumer Electronics – Taiwan (ICCE-Taiwan). 2023. PP. 593-594. https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226736  https://ieeexplore.ieee.org/document/10226736

11. Zhang T., Zhang X., Ke X., Zhan X., Shi J., Wei S., Pan D., Li J., Su H., Zhou Y., Kumar D. LS-SSDD-v1.0: A Deep Learning Dataset Dedicated to Small Ship Detection from Large-Scale Sentinel-1 SAR Images. Remote Sensing. 2020. 12. 2997. https://doi.org/10.3390/rs12182997

12. Kazachkov E.A., Matyugin S.N., Popov I.V., Sharonov V.V. Detection and classification of small-scale objects in images obtained by synthetic-aperture radar stations. Vestnik Koncerna VKO «Almaz – Antej» [Journal of «Almaz – Antey» Air and Space Defence Corporation]. 2018. No. 1. P. 93-99 (In Russian) https://doi.org/10.38013/2542-0542-2018-1-93-99

13. Kupryashkin I.F., Likhachev V.P. Kosmicheskaya radiolokatsionnaya s"yemka zemnoy poverkhnosti v usloviyakh pomekh [Earth's surface space radar imaging in jamming conditions]. Voronezh, Nauchnaya Kniga Publ. 2014. 460 p. (In Russian)

14. Kupryashkin I.F. Military objects detection using a convolutional neural network on radar images formed in jamming conditions. Journal of Radio Electronics. 2022. №6. (In Russian) https://doi.org/10.30898/1684-1719.2022.6.8

For citation:

Kupryashkin I.F. Military objects detection using a convolutional neural network on radar images formed in jamming conditions. // Journal of Radio Electronics. – 2025. – №. 2. https://doi.org/10.30898/1684-1719.2025.2.7 (In Russian)