"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 1, 2017

contents             full textpdf   

Generation of powerful pulses in terahertz and infrared bands during interaction of multi-terawatt laser fields with limited size targets

 

Victor V. Kulagin1,2, Vladimir N. Kornienko2, Vladimir A. Cherepenin2, D. N. Gupta3

1Sternberg Astronomical Institute of Lomonosov Moscow State University, Leninskiye Gory 1-18, Moscow 119991, Russia

2Kotel’nikov Institute of Radio-engineering and Electronics of RAS, Mokhovaya 11-7, Moscow 125009, Russia

3University of Delhi, Delhi, India

 

The paper is received on December 23, 2016

 

Аннотация. Исследованы процессы генерации излучения инфракрасного и терагерцевого диапазонов, возникающего при синхронном ускорении электронов мишени ограниченных размеров под действием сверхмощного лазерного импульса с крутым фронтом. Изучены условия, приводящие к формированию двуполярных и квазиоднополярных импульсов, а также определены возможные характеристики импульсов, такие как форма, амплитуда и длительность в зависимости от параметров мишени и лазерного импульса. Для лазерного импульса с амплитудой, недостаточной для вытеснения всех электронов из мишени, генерируется цуг колебаний, содержащий как низкочастотную составляющую, так и компоненту с частотой порядка частоты лазера, причем длительность цуга определяется длительностью лазерного импульса.

Ключевые слова: взаимодействие лазерного излучения с веществом, ускорение электронов лазерными импульсами, генерация терагерцевого и инфракрасного излучения.

Abstract: The processes for generation of radiation in the infrared and terahertz bands that occur during a synchronous acceleration of the electrons of the limited size target under the action of a high-power laser pulse with a steep front are considered. Conditions leading to the formation of bipolar and quasi-unipolar pulses are studied, and possible pulse characteristics such as shape, amplitude and duration versus parameters of the target and the laser pulse are defined. For a laser pulse with the amplitude insufficient to displace all electrons from the target at once, a train of oscillations containing both low-frequency component and a component with frequency of the order of the laser frequency are generated, while the total duration of the radiation pulse is determined by the duration of the laser pulse.

Key words: interaction of laser radiation with matter, electron acceleration by laser pulses, generation of THz and infrared radiation.

References

1. Ferguson B., Zhang X. C. Materials for terahertz science and technology. Nature Materials, 2002, Vol. 1, pp. 26–33. DOI:10.1038/nmat708.

2. Williams G. P. Filling the THz gap—high power sources and applications. Reports on Progress in Physics, 2006, Vol. 69, pp. 301–326.

3. Kulagin V.V., Cherepenin V.A., Hur M.S., Suk H. Theoretical Investigation of Controlled Generation of a Dense Attosecond Relativistic Electron Bunch from the Interaction of an Ultrashort Laser Pulse with a Nanofilm. Phys. Rev. Lett., 2007, Vol. 99, p. 124801.

4. Kulagin V.V., Cherepenin V.A., Gulyaev Y.V. et al.  Characteristics of relativistic electron mirrors generated by an ultrashort nonadiabatic laser pulse from a nanofilm. Phys. Rev. E, 2009, Vol. 80, p. 016404.

5. Kiefer D., Henig A., Jung D. et al. First observation of quasi-monoenergetic electron bunches driven out of ultra-thin diamond-like carbon (DLC) foils. Eur. Phys. J. D, 2009, Vol. 55, pp. 427-432.

6. Paz A., Kuschel S., Rodel C. et al. Thomson backscattering from laser-generated,

relativistically moving high-density electron layers. New J. of Physics, 2012, Vol. 14, p. 093018.

7. Kiefer D., Yeung M., Dzelzainis T. et al. Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet. Nature Commun., 2013, Vol. 4, p. 1763. DOI: 10.1038/ncomms2775.

8. Kulagin V.V., Kornienko V.N., Cherepenin V.A. Generation of terahertz and infrared pulses during relativistic interaction of intense laser radiation with nanoscale targets. Uchenye zapiski fizicheskogo fakulteta Moskovskogo Universiteta, 2014, № 4, p. 144337. DOI: http://uzmu.phys.msu.ru/abstract/2014/4/144337. (In Russian).

9. Popov K. I., Bychenkov V. Yu., Rozmus W. et al. Vacuum electron acceleration by tightly focused laser pulses with nanoscale targets. Phys. Plasmas, 2009, Vol. 16, p. 053106.

10. Bulanov S.S., Bychenkov V. Yu.,  Krushelnick K. et al. Swarm of ultra-high intensity attosecond pulses from laser-plasma interaction. Journal of Physics: Conference Series, 2010, Vol. 244, p. 022029.

11. Lucchio L. D., Gibbon P. Relativistic attosecond electron bunch emission from few-cycle laser irradiated nanoscale droplets. Phys. Rev. ST Accel. Beams, 2015, Vol. 18, p. 023402.

12. Landau L.D., Lifshitz E.M. The Classical Theory of Fields. Pergamon, Oxford. 1975. 540 p.

13. Hartemann F.V., Kerman A.K. Classical Theory of Nonlinear Compton Scattering. Phys. Rev. Lett., 1996, Vol. 76, p. 624-627.

14. Hartemann F.V., Troha A.L., Luhmann N.C., Jr. et al. Spectral analysis of the nonlinear relativistic Doppler shift in ultrahigh intensity Compton scattering. Phys. Rev. E, 1996, Vol. 54, pp. 2956-2962.

15. Hartemann F.V. High-intensity scattering processes of relativistic electrons in vacuum. Phys. Plasmas, 1998, Vol. 5, pp. 2037- 2047.

16. Gao J. Thomson Scattering from Ultrashort and Ultraintense Laser Pulses. Phys. Rev. Lett., 2004, Vol. 93, p. 243001.

17. Verboncoeur J.P., Langdon A.B., Gladd N.T. An object-oriented electromagnetic PIC code. Comput. Phys. Commun., 1995, Vol. 87, p. 199- 211.

 

Reference to this paper:

Victor V. Kulagin, Vladimir N. Kornienko, Vladimir A. Cherepenin, D. N. Gupta. Generation of powerful pulses in terahertz and infrared bands during interaction of multi-terawatt laser fields with limited size targets.Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 1. Available at http://jre.cplire.ru/jre/jan17/15/text.pdf. (In Russian)