.
About some methods of mass standard redetermination. Izmeritel'naya tekhnika
- Measurement technique, 2006, N4, pp.3-7 (In Russian)
[2] Zimmerman, Neil
M., and Mark W. Keller. "Electrical metrology with single electrons."
Measurement Science and Technology 14.8 (2003): 1237.
[3] Piquemal,
François, et al. "Fundamental electrical standards and the quantum
metrological triangle." Comptes Rendus Physique 5.8 (2004):
857-879.
[4] Likharev, K. K.,
and A. B. Zorin. "Theory of the Bloch-wave oscillations in small Josephson
junctions." Journal of Low Temperature Physics 59.3-4
(1985): 347-382.
[5] Bordé, Christian J. "Base units of the SI, fundamental
constants and modern quantum physics." Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences
363.1834 (2005): 2177-2201.
[6] Pekola, Jukka P., et al. "Single-electron current sources:
Toward a refined definition of the ampere." Reviews of Modern Physics
85.4 (2013): 1421.
[7] Geerligs, L. J., et al. "Frequency-locked turnstile device for
single electrons." Physical review letters 64.22 (1990): 2691.
[8] Averin, D. V.,
and A. A. Odintsov. "Macroscopic quantum tunneling of the electric charge
in small tunnel junctions." Physics Letters A 140.5 (1989):
251-257.
[9] Averin, D. V., A.
A. Odintsov, and S. V. Vyshenskii. "Ultimate accuracy of
single‐electron dc current standards." Journal of applied
physics 73.3 (1993): 1297-1308.
[10]
Zorin, A. B., et al. "Coulomb blockade and
cotunneling in single electron circuits with on-chip resistors: towards the
implementation of r-pump." arXiv preprint cond-mat/9912032 (1999).
[11]
Blumenthal, M. D., et al. "Gigahertz
quantized charge pumping." Nature Physics 3.5 (2007): 343-347.
[12]
Hu, Yongjie, et al. "A Ge/Si heterostructure
nanowire-based double quantum dot with integrated charge sensor."
Nature
nanotechnology 2.10 (2007): 622-625.
[13]
Kouwenhoven, L. P., et al. "Quantized
current in a quantum-dot turnstile using oscillating tunnel barriers." Physical
Review Letters 67.12 (1991): 1626.
[14]
Kouwenhoven, L. P., et al. "Quantized
current in a quantum dot turnstile." Zeitschrift für Physik B
Condensed Matter 85.3 (1991): 381-388.
[15]
Kouwenhoven, L. P., A. T. Johnson, N. C. Van der
Vaart, A. Van der Enden, C. J. P. M. Harmans, and C. T. Foxon. "Quantized
current in a quantum dot turnstile." Zeitschrift für Physik B
Condensed Matter 85, no. 3 (1991): 381-388.
[16]
Giblin, S. P., M. Kataoka, J. D. Fletcher, P. See, T.
J. B. M. Janssen, J. P. Griffiths, G. A. C. Jones, I. Farrer, and D. A.
Ritchie. "Towards a quantum representation of the ampere using single
electron pumps." Nature communications 3 (2012): 930.
[17]
Yamahata, Gento, Katsuhiko Nishiguchi, and Akira
Fujiwara. "Gigahertz single-trap electron pumps in silicon."
Nature
communications 5 (2014).
[18]
Janssen, T. J. B. M., and A. Hartland. "Accuracy
of quantized single-electron current in a one-dimensional channel."
Physica
B: Condensed Matter 284 (2000): 1790-1791.
[19]
Hobbs, Richard G., Nikolay Petkov, and Justin D.
Holmes. "Semiconductor nanowire fabrication by bottom-up and top-down
paradigms." Chemistry of Materials 24, no. 11 (2012):
1975-1991.
[20]
Santos, A., M. J. Deen, and L. F. Marsal.
"Low-cost fabrication technologies for nanostructures: state-of-the-art
and potential." Nanotechnology 26, no. 4 (2015): 042001.
[21]
Lu, Cheng, and R. H. Lipson. "Interference
lithography: a powerful tool for fabricating periodic structures."
Laser
& Photonics Reviews 4, no. 4 (2010): 568-580.
[22]
Do, Yun Seon, Jung Ho Park, Bo Yeon Hwang,
Sung‐Min Lee, Byeong‐Kwon Ju, and Kyung Cheol Choi. "Plasmonic
Color Filter and its Fabrication for Large‐Area Applications."
Advanced
Optical Materials 1, no. 2 (2013): 133-138.
[23]
French, Roger H., and Hoang V. Tran. "Immersion
lithography: photomask and wafer-level materials." Annual Review
of Materials Research 39 (2009): 93-126.
[24]
Kemp, Kevin, and Stefan Wurm. "EUV
lithography." Comptes Rendus Physique 7, no. 8 (2006): 875-886.
[25]
Maldonado, Juan R., and Martin Peckerar. "X-ray
lithography: Some history, current status and future prospects." Microelectronic
Engineering 161 (2016): 87-93.
[26]
Yang, Joel KW, Bryan Cord, Huigao Duan, Karl K.
Berggren, Joseph Klingfus, Sung-Wook Nam, Ki-Bum Kim, and Michael J. Rooks.
"Understanding of hydrogen silsesquioxane electron resist for
sub-5-nm-half-pitch lithography." (2009).
[27]
Manfrinato, Vitor R., Lin Lee Cheong, Huigao
Duan, Donald Winston, Henry I. Smith, and Karl K. Berggren. "Sub-5keV
electron-beam lithography in hydrogen silsesquioxane resist." Microelectronic
Engineering 88, no. 10 (2011): 3070-3074.
[28]
Sim, Jae Hwan, Sung-Il Lee, Hae-Jeong Lee, Richard
Kasica, Hyun-Mi Kim, Christopher L. Soles, Ki-Bum Kim, and Do Y. Yoon.
"Novel Organosilicate Polymer Resists for High Resolution E-Beam
Lithography." Chemistry of Materials 22, no. 10 (2010):
3021-3023.
[29]
Pain, Laurent, Serge Tedesco, and Christophe
Constancias. "Direct write lithography: the global solution for R&D
and manufacturing." Comptes Rendus Physique 7, no. 8 (2006):
910-923.
[30]
Lee, Hyo-Sung, Byung-Sung Kim, Hyun-Mi Kim,
Jung-Sub Wi, Sung-Wook Nam, Kyung-Bae Jin, Ki-Bum Kim, and Yoshihiro Arai.
"Electron beam projection nanopatterning using crystal lattice images
obtained from high resolution transmission electron microscopy." In SPIE
OPTO: Integrated Optoelectronic Devices, pp. 72221B-72221B. International
Society for Optics and Photonics, 2009.
[31]
Sidorkin, V., E. van Veldhoven, and E. van der Drift.
"van der; Alkemade, P.; Salemink, H.; Maas, D." J. Vac. Sci.
Technol.,
B 27 (2009): 25.
[32]
Winston, Donald, Vitor R. Manfrinato, Samuel M.
Nicaise, Lin Lee Cheong, Huigao Duan, David Ferranti, Jeff Marshman et al.
"Neon
ion beam lithography (NIBL)." Nano letters 11, no. 10 (2011):
4343-4347.
[33]
Lieber, Charles M., and Zhong Lin Wang.
"Functional nanowires." MRS bulletin 32, no. 02 (2007):
99-108.
[34]
Fuhrer, Andreas, Carina Fasth, and Lars Samuelson.
"Single electron pumping in InAs nanowire double quantum dots."
Applied
Physics Letters 91, no. 5 (2007): 052109.
[35]
d’Hollosy, S., M. Jung, A. Baumgartner, V. A. Guzenko,
M. H. Madsen, J. Nygard, and C. Schönenberger. "Gigahertz quantized
charge pumping in bottom-gate-defined InAs nanowire quantum dots."
Nano
letters 15, no. 7 (2015): 4585-4590.
[36]
Holmes, Justin D., Keith P. Johnston, R. Christopher
Doty, and Brian A. Korgel. "Control of thickness and orientation of
solution-grown silicon nanowires." Science 287, no. 5457
(2000): 1471-1473.
[37]
Dayeh, Shadi A., and S. T. Picraux. "Direct
observation of nanoscale size effects in Ge semiconductor nanowire
growth." Nano letters 10, no. 10 (2010): 4032-4039.
[38]
Lu, Wei, Jie Xiang, Brian P. Timko, Yue Wu, and
Charles M. Lieber. "One-dimensional hole gas in germanium/silicon nanowire
heterostructures." Proceedings of the National Academy of Sciences of
the United States of America 102, no. 29 (2005): 10046-10051.
[39]
Yuan, Fang-Wei, and
Hsing-Yu Tuan. "Supercritical fluid− solid growth of
single-crystalline silicon nanowires: An example of metal-free growth in an
organic solvent." Crystal Growth & Design 10, no. 11
(2010): 4741-4745.
[40]
Tuan, Hsing-Yu, Doh C. Lee, Tobias Hanrath, and Brian
A. Korgel. "Germanium nanowire synthesis: An example of solid-phase seeded
growth with nickel nanocrystals." Chemistry of materials 17,
no. 23 (2005): 5705-5711.
[41]
Heitsch, Andrew T.,
Dayne D. Fanfair, Hsing-Yu Tuan, and Brian A. Korgel. "solution−
liquid− solid (SLS) growth of silicon nanowires."
Journal of the American Chemical Society
130, no. 16 (2008): 5436-5437.
[42]
Lensch-Falk, Jessica L., Eric R. Hemesath, Francisco J.
Lopez, and Lincoln J. Lauhon. "Vapor-solid-solid synthesis of Ge nanowires
from vapor-phase-deposited manganese germanide seeds." Journal
of the American Chemical Society 129, no. 35 (2007): 10670-10671.
[43]
Bierman, Matthew J., YK Albert Lau, Alexander V. Kvit,
Andrew L. Schmitt, and Song Jin. "Dislocation-driven nanowire
growth and Eshelby twist." Science 320, no. 5879 (2008): 1060-1063.
[44]
Koch, R. H., and A. Hartstein. "Evidence for
resonant tunneling of electrons via sodium ions in silicon dioxide."
Physical
review letters 54, no. 16 (1985): 1848.