"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 1, 2017

contents             full textpdf   

Practical aspects of creating a quantum standard of current

I. A. Cohn, A. N. Vystavkin, A. S. Ilin, A. G. Kovalenko

Kotel’nikov Institute of Radio-engineering and Electronics of RAS, Mokhovaya 11, Moscow 125009, Russia


The paper is received on December 22, 2016


Abstract. The realization of the quantum metrology triangle offers a great breakthrough in metrology. Moreover, it will aid in the refinement of fundamental constants, namely the elementary charge and the Planck constant. Currently, there are no commercially available fundamental current sources, unlike those for frequency and voltage. We review single electron devices designs, which  are suitable as a current standard for the quantum metrology triangle. Quantum dot semiconductor electron pumps offer a best combination of ampacity and accuracy. The main component of such devices is a single-dimensional wire, on which is turned into a series of quantum dots with electrostatic gates. Different are fabrication technology concepts are compared. Top-down fabrication offers excellent placement control, however  requires expensive equipment. Bottom-up fabrication allows nanowire mass production, with a possibility of different doping zones in-situ. The main drawback is the transfer of the nanowires to a substrate and the subsequent integration into the measurement circuit.

Key words: single electron devices, electron pump, one-dimensional structures, nanowire, current standard, high resolution lithography.


[1] Kononogov  S.A., Konstantinov M.Yu., Khruschov. About some methods of mass standard redetermination. Izmeritel'naya tekhnika - Measurement technique, 2006, N4, pp.3-7 (In Russian)

[2] Zimmerman, Neil M., and Mark W. Keller. "Electrical metrology with single electrons." Measurement Science and Technology 14.8 (2003): 1237.

[3] Piquemal, François, et al. "Fundamental electrical standards and the quantum metrological triangle." Comptes Rendus Physique 5.8 (2004): 857-879.

[4] Likharev, K. K., and A. B. Zorin. "Theory of the Bloch-wave oscillations in small Josephson junctions." Journal of Low Temperature Physics 59.3-4 (1985): 347-382.

[5] Bordé, Christian J. "Base units of the SI, fundamental constants and modern quantum physics." Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 363.1834 (2005): 2177-2201.

[6] Pekola, Jukka P., et al. "Single-electron current sources: Toward a refined definition of the ampere." Reviews of Modern Physics 85.4 (2013): 1421.

[7] Geerligs, L. J., et al. "Frequency-locked turnstile device for single electrons." Physical review letters 64.22 (1990): 2691.

[8] Averin, D. V., and A. A. Odintsov. "Macroscopic quantum tunneling of the electric charge in small tunnel junctions." Physics Letters A 140.5 (1989): 251-257.

[9] Averin, D. V., A. A. Odintsov, and S. V. Vyshenskii. "Ultimate accuracy of single‐electron dc current standards." Journal of applied physics 73.3 (1993): 1297-1308.

[10]                    Zorin, A. B., et al. "Coulomb blockade and cotunneling in single electron circuits with on-chip resistors: towards the implementation of r-pump." arXiv preprint cond-mat/9912032 (1999).

[11]                    Blumenthal, M. D., et al. "Gigahertz quantized charge pumping." Nature Physics 3.5 (2007): 343-347.

[12]                    Hu, Yongjie, et al. "A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor." Nature nanotechnology 2.10 (2007): 622-625.

[13]                    Kouwenhoven, L. P., et al. "Quantized current in a quantum-dot turnstile using oscillating tunnel barriers." Physical Review Letters 67.12 (1991): 1626.

[14]                    Kouwenhoven, L. P., et al. "Quantized current in a quantum dot turnstile." Zeitschrift für Physik B Condensed Matter 85.3 (1991): 381-388.

[15]                    Kouwenhoven, L. P., A. T. Johnson, N. C. Van der Vaart, A. Van der Enden, C. J. P. M. Harmans, and C. T. Foxon. "Quantized current in a quantum dot turnstile." Zeitschrift für Physik B Condensed Matter 85, no. 3 (1991): 381-388.

[16]                    Giblin, S. P., M. Kataoka, J. D. Fletcher, P. See, T. J. B. M. Janssen, J. P. Griffiths, G. A. C. Jones, I. Farrer, and D. A. Ritchie. "Towards a quantum representation of the ampere using single electron pumps." Nature communications 3 (2012): 930.

[17]                    Yamahata, Gento, Katsuhiko Nishiguchi, and Akira Fujiwara. "Gigahertz single-trap electron pumps in silicon." Nature communications 5 (2014).

[18]                    Janssen, T. J. B. M., and A. Hartland. "Accuracy of quantized single-electron current in a one-dimensional channel." Physica B: Condensed Matter 284 (2000): 1790-1791.

[19]                    Hobbs, Richard G., Nikolay Petkov, and Justin D. Holmes. "Semiconductor nanowire fabrication by bottom-up and top-down paradigms." Chemistry of Materials 24, no. 11 (2012): 1975-1991.

[20]                    Santos, A., M. J. Deen, and L. F. Marsal. "Low-cost fabrication technologies for nanostructures: state-of-the-art and potential." Nanotechnology 26, no. 4 (2015): 042001.

[21]                    Lu, Cheng, and R. H. Lipson. "Interference lithography: a powerful tool for fabricating periodic structures." Laser & Photonics Reviews 4, no. 4 (2010): 568-580.

[22]                    Do, Yun Seon, Jung Ho Park, Bo Yeon Hwang, Sung‐Min Lee, Byeong‐Kwon Ju, and Kyung Cheol Choi. "Plasmonic Color Filter and its Fabrication for Large‐Area Applications." Advanced Optical Materials 1, no. 2 (2013): 133-138.

[23]                    French, Roger H., and Hoang V. Tran. "Immersion lithography: photomask and wafer-level materials." Annual Review of Materials Research 39 (2009): 93-126.

[24]                    Kemp, Kevin, and Stefan Wurm. "EUV lithography." Comptes Rendus Physique 7, no. 8 (2006): 875-886.

[25]                    Maldonado, Juan R., and Martin Peckerar. "X-ray lithography: Some history, current status and future prospects." Microelectronic Engineering 161 (2016): 87-93.

[26]                    Yang, Joel KW, Bryan Cord, Huigao Duan, Karl K. Berggren, Joseph Klingfus, Sung-Wook Nam, Ki-Bum Kim, and Michael J. Rooks. "Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography." (2009).

[27]                    Manfrinato, Vitor R., Lin Lee Cheong, Huigao Duan, Donald Winston, Henry I. Smith, and Karl K. Berggren. "Sub-5keV electron-beam lithography in hydrogen silsesquioxane resist." Microelectronic Engineering 88, no. 10 (2011): 3070-3074.

[28]                    Sim, Jae Hwan, Sung-Il Lee, Hae-Jeong Lee, Richard Kasica, Hyun-Mi Kim, Christopher L. Soles, Ki-Bum Kim, and Do Y. Yoon. "Novel Organosilicate Polymer Resists for High Resolution E-Beam Lithography." Chemistry of Materials 22, no. 10 (2010): 3021-3023.

[29]                    Pain, Laurent, Serge Tedesco, and Christophe Constancias. "Direct write lithography: the global solution for R&D and manufacturing." Comptes Rendus Physique 7, no. 8 (2006): 910-923.

[30]                    Lee, Hyo-Sung, Byung-Sung Kim, Hyun-Mi Kim, Jung-Sub Wi, Sung-Wook Nam, Kyung-Bae Jin, Ki-Bum Kim, and Yoshihiro Arai. "Electron beam projection nanopatterning using crystal lattice images obtained from high resolution transmission electron microscopy." In SPIE OPTO: Integrated Optoelectronic Devices, pp. 72221B-72221B. International Society for Optics and Photonics, 2009.

[31]                    Sidorkin, V., E. van Veldhoven, and E. van der Drift. "van der; Alkemade, P.; Salemink, H.; Maas, D." J. Vac. Sci. Technol., B 27 (2009): 25.

[32]                    Winston, Donald, Vitor R. Manfrinato, Samuel M. Nicaise, Lin Lee Cheong, Huigao Duan, David Ferranti, Jeff Marshman et al. "Neon ion beam lithography (NIBL)." Nano letters 11, no. 10 (2011): 4343-4347.

[33]                    Lieber, Charles M., and Zhong Lin Wang. "Functional nanowires." MRS bulletin 32, no. 02 (2007): 99-108.

[34]                    Fuhrer, Andreas, Carina Fasth, and Lars Samuelson. "Single electron pumping in InAs nanowire double quantum dots." Applied Physics Letters 91, no. 5 (2007): 052109.

[35]                    d’Hollosy, S., M. Jung, A. Baumgartner, V. A. Guzenko, M. H. Madsen, J. Nygard, and C. Schönenberger. "Gigahertz quantized charge pumping in bottom-gate-defined InAs nanowire quantum dots." Nano letters 15, no. 7 (2015): 4585-4590.

[36]                    Holmes, Justin D., Keith P. Johnston, R. Christopher Doty, and Brian A. Korgel. "Control of thickness and orientation of solution-grown silicon nanowires." Science 287, no. 5457 (2000): 1471-1473.

[37]                    Dayeh, Shadi A., and S. T. Picraux. "Direct observation of nanoscale size effects in Ge semiconductor nanowire growth." Nano letters 10, no. 10 (2010): 4032-4039.

[38]                    Lu, Wei, Jie Xiang, Brian P. Timko, Yue Wu, and Charles M. Lieber. "One-dimensional hole gas in germanium/silicon nanowire heterostructures." Proceedings of the National Academy of Sciences of the United States of America 102, no. 29 (2005): 10046-10051.

[39]                    Yuan, Fang-Wei, and Hsing-Yu Tuan. "Supercritical fluid− solid growth of single-crystalline silicon nanowires: An example of metal-free growth in an organic solvent." Crystal Growth & Design 10, no. 11 (2010): 4741-4745.

[40]                    Tuan, Hsing-Yu, Doh C. Lee, Tobias Hanrath, and Brian A. Korgel. "Germanium nanowire synthesis: An example of solid-phase seeded growth with nickel nanocrystals." Chemistry of materials 17, no. 23 (2005): 5705-5711.

[41]                    Heitsch, Andrew T., Dayne D. Fanfair, Hsing-Yu Tuan, and Brian A. Korgel. "solution− liquid− solid (SLS) growth of silicon nanowires." Journal of the American Chemical Society 130, no. 16 (2008): 5436-5437.

[42]                    Lensch-Falk, Jessica L., Eric R. Hemesath, Francisco J. Lopez, and Lincoln J. Lauhon. "Vapor-solid-solid synthesis of Ge nanowires from vapor-phase-deposited manganese germanide seeds." Journal of the American Chemical Society 129, no. 35 (2007): 10670-10671.

[43]                    Bierman, Matthew J., YK Albert Lau, Alexander V. Kvit, Andrew L. Schmitt, and Song Jin. "Dislocation-driven nanowire growth and Eshelby twist." Science 320, no. 5879 (2008): 1060-1063.

[44]                    Koch, R. H., and A. Hartstein. "Evidence for resonant tunneling of electrons via sodium ions in silicon dioxide." Physical review letters 54, no. 16 (1985): 1848.


Reference to this paper:

Practical aspects of creating a quantum standard of current. I. A. Cohn, A. N. Vystavkin, A. S. Ilin, A. G. Kovalenko. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 1. Available at http://jre.cplire.ru/jre/jan17/5/text.pdf. (In Russian)