"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 1, 2019

contents of issue      DOI  10.30898/1684-1719.2019.1.9     full text in Russian (pdf)  

An approach for analysis of redistribution of dopant in a multilayer structure during manufacturing a detection comparator. Accounting of nonlinearity of the redistribution, time dependence of parameters and radiation defects

E. L. Pankratov

Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia

Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod, 603950, Russia

 

The paper is received on January 15, 2019

 

Abstract. In this paper we introduce a model of dopant redistribution in a multilayer structure during manufacturing a detection comparator with account nonlinearity of the redistribution, time dependence of parameters (through their temperature dependence) and radiation defects (for ion type of doping). We also introduce an approach to analyze the approach based on solving of appropriate differential equations. Based on the solution we introduce an approach to increase integration rate of elements of an detection comparator. Framework the approach we consider a heterostructure with special configuration. Several specific areas of the heterostructure should be doped by diffusion or ion implantation. Annealing of dopant and/or radiation defects should be optimized.

Keywords: detection comparator, increasing of integration rate, optimization of technological process.

References

1. V.I. Lachin, N.S. Savelov. Elektronika [Electronics]. Rostov-on-Don, Feniks Publ.,  2001. (In Russian)

2. A.G. Alexenko, I.I. Shagurin. Mikroskhemotekhnika [Microcircuitry]. Moscow, Radio I Svyaz Publ., 1990. (In Russian)

3. N.A. Avaev, Yu.E. Naumov, V.T Frolkin. Osnovy mikroelektroniki [Basis of microelectronics]. Moscow, Radio I Svyaz Publ., 1991.  (In Russian)

4. X. Tang, K.P. Pun. New fully-differential amplifier-less pipelined ADC with wide power scalability and ERBW. Analog. Integr. Circ. Sig. Process. 2014. Vol. 80. P. 427-435.

5. D. Fathi, B. Forouzandeh, N. Masoumi. New enhanced noise analysis in active mixers in nanoscale technologies. Nano. 2009. Vol. 4. No. 4. P. 233-238.

6 S.A. Chachuli, P.N.A. Fasyar, N. Soin, N.M. Karim, N. Yusop. Pareto ANOVA analysis for CMOS 0.18µm two-stage Op-amp. Mat. Sci. Sem. Proc. 2014. Vol. 24. P. 9-14.

7. A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Au-TiB x -n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors. 2009. Vol. 43. No. 7. P. 865-873.

8. Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R.F. Karlicek, Jr.T.P. Chow. Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate. Appl. Phys. Lett. Vol. 102. No. 19. P. 192107-192109 (2013).

9.Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High-performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. 2009. Vol. 43. No. 7. P. 939-942.

10. O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. Formation of donor centers upon annealing of dysprosium and holmium-implanted silicon. Semiconductors. 1998. Vol. 32. No. 9. P. 921-923.

11. M.J. Kumar, T.V. Singh. Quantum confinement effects in strained silicon MOSFETS. Int. J. Nanoscience. 2008. Vol. 7. No. 2-3. P. 81-84.

12. P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl. Phys. Lett. 2013. Vol. 102. No. 5. P. 053901-053905.

13. J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shallow acceptor complexes in p-type ZnO. Appl. Phys. Lett. 2013. Vol. 102. No. 15. P. 152114-152118.

14. K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl. Phys. Lett. 2006. Vol. 89. No. 17.  P. 172111-172114.

15. H.T. Wang, L.S. Tan, E. F. Chor. Pulsed laser annealing of Be-implanted GaN. J. Appl. Phys. 2005. Vol. 98. No. 9. P. 094901-094905.

16. S.T. Shishiyanu, T.S. Shishiyanu, S.K. Railyan. Shallow p-n-junctions formed in silicon using pulsed photon annealing. Semiconductors. 2002. Vol. 36. No. 5. P. 581-587.

17. Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing. Radiophysics and Quantum Electronics. 2003. Vol. 46. No. 8-9. P. 749-755.

18. E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Reviews in Theoretical Science. 2013. Vol. 1. No. 1. P. 58-82.

19. V.V. Kozlovsky. Modifitsirovanie poluprovodnikov puchkami protonov [Modification of semiconductors by proton beams]. Sant-Peterburg, Nauka Publ., 2003. (In Russian)

20. Z.Yu. Gotra.  Tekhnologiya mikroelektronnykh ustroistv [Technology of microelectronic devices]. Moscow, Radio I Svyaz Publ., 1991. (In Russian)

21. V.L. Vinetskiy, G.A. Kholodar', Radiatsionnaya fizika poluprovodnikov [Radiative physics of semiconductors]. Kiev, Naukova Dumka Publ., 1979. (In Russian)

22. P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 1989. Vol. 61. No. 2. P. 289-388.

23. A.N. Tikhonov, A.A. Samarskii. Uravneniya matematicheskoy fiziki [Mathematical physics equations]. Moscow, Nauka Publ., 1972. (In Russian)

24. H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids. London: Oxford University Press, 1964.

25. E.L. Pankratov. Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity. Russian Microelectronics. 2007. Vol. 36. No. 1. P. 33-39.

26. E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. 2008. Vol. 7. No. 4-5. P. 187-197.

27. E.L. Pankratov. On approach to optimize manufacturing of bipolar heterotransistors framework circuit of an operational amplifier to increase their integration rate. Influence mismatch-induced stress. J. Comp. Theor. Nanoscience. 2017. Vol. 14. No. 10. P. 4885-4899.

28. E.L. Pankratov. On modelling of manufacturing of a high-voltage current driver framework a heterostructures under influence of miss-match induced stress and porosity of materials. J. Comp. Theor. Nanoscience. 2018. Vol. 1. No. 6/7. P. 1898-1914.

29. E.L. Pankratov. On optimization of manufacturing of two-phase logic circuit based on heterostructures to increase density of their elements. Advanced science, engineering and medicine. 2017. Vol. 9. No. 9. P. 787-801.

30. E.L. Pankratov, E.A. Bulaeva. On variation of charge carrier mobility under influence of mismatch-induced stress in a heterostructure. Multidiscipline modeling in materials and structures. 2018. Vol. 14. No. 1. P. 77-90.

31. E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film structures. On the method of optimization. Int. J. Micro-Nano Scale Transp. 2014. Vol. 4. No. 1. P. 17-31.

32. E.L. Pankratov, E.A. Bulaeva. Application of native inhomogeneities to increase compactness of vertical field-effect transistors. J. Nanoengineering and Nanomanufacturing. 2012. Vol. 2. No. 3. P. 275-280.

33. E.L. Pankratov, E.A. Bulaeva. An approach to increase the integration rate of planar drift heterobipolar transistors. Materials science in semiconductor processing. 2015. Vol. 34. P. 260-268.

 

For citation:

E. L. Pankratov. An approach for analysis of redistribution of dopant in a multilayer structure during manufacturing a detection comparator. Accounting of nonlinearity of the redistribution, time dependence of parameters and radiation defects. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 1. Available at http://jre.cplire.ru/jre/jan19/9/text.pdf

DOI  10.30898/1684-1719.2019.1.9