Journal of Radio Electronics. eISSN 1684-1719. 2024. 1
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2024.1.11

 

APPLICATION OF PHASE-CODE Shift Keyed PROBING SIGNALS
WITH ZERO AUTOCORRELATION ZONE
TO IMPROVE THE QUALITY OF MEASUREMENTS IN SAR

 

R.N. Ipanov, A.A. Komarov

 

National Research University MPEI
111250, Russia, Moscow, Krasnokazarmennaya str., 14

 

The paper was received November 27, 2023.

 

Abstract. For SARs, a polyphase (p-phase, where p is a prime number) probing signal with a zero autocorrelation zone has been synthesized, which is a train of p phase-code shift keyed (PCSK) pulses coded by complementary sequences of a p-ary D-code with additional phase-code shift-keying of the sub-pulses (discretes) of pulses by an M-sequences. To assess the quality of radar images of point targets and extended surfaces, the levels of the maximum side lobe and one-way integrated correlation noise of the autocorrelation function (ACF) are used, respectively. For this purpose, the work carried out a comparative analysis of the total ACFs of the synthesized ensemble of signals with ensembles of orthogonal chirp and PCSK-signals used in adjacent SAR sounding cycles. The work also considers the problem of superimposition of SAR echo signals from different ranges at a relatively high repetition rate of probing pulses. To assess the level of suppression of recurrent interference from point targets and from extended surfaces, the levels of the maximum side lobe and one-sided integral correlation noise of the cross-correlation function (CCF) are used, respectively. For this purpose, the work carried out a comparative analysis of the total CCFs of the synthesized ensemble of signals with ensembles of orthogonal chirp and PCSK- signals used in the SAR aperture synthesis modes. The use of orthogonal chirp and PCSK-signals makes it possible to successfully suppress false signals from bright point targets from adjacent repetition periods. However, the high level of integral correlation noise of the CCF of orthogonal signals distorts radar images of weakly reflecting surfaces located next to bright extended objects. The indicators of the total correlation characteristics of the synthesized ensemble of signals exceed the corresponding indicators of the total correlation characteristics of the ensemble of orthogonal PCSK-and chirp signals, both without mismatch and with Doppler frequency mismatch. This makes it possible to successfully use an PCSK-signal with a zero autocorrelation zone to improve the quality of radar images and suppress recurrent range interference in SAR.

Key words: ambiguity function, autocorrelation function, cross-correlation function, M-sequence, orthogonal signal, pulse train, recurrent interference, zero autocorrelation zone.

Financing: The reported study was funded by the Russian Science Foundation according to the research project № 23-19-00485, https://rscf.ru/project/23-19-00485/.

Corresponding author: Ipanov Roman Nikolaevich, iproman@ya.ru

References

1. Новые технологии дистанционного зондирования Земли из космоса [New technologies of remote sensing of the Earth from space] / В.В. Груздов, Ю.В. Колковский, А.В. Криштопов, А.И. Кудря. – Москва: Техносфера, 2018. – 482 с.

2. Кудря А.И. Расширение возможностей использования M-последовательности в PCА [Expanding the possibilities of using the M-sequence in SAR] / А.И. Кудря, Е.Ф. Толстов, В.Н. Четверик // Труды 5-ой Всероссийской научной конференции «Радиофизические методы в дистанционном зондировании сред» (г. Муром, 26–28 июня 2012 г.). – Муром: МиВЛГУ, 2012. – С. 518–531.

3. A planet rediscovered: results of Venus radar imaging from the Venera 15 and Venera 16 spacecraft / Yu.N. Alexandrov, A.T. Basilevski, V.A. Kotelnikov [et al.] // Astrophysics and Space Physics Reviews. – 1988. – Vol. 6, № 1. – P. 61–101.

4. Johnson W.T.K. Magellan imaging radar mission to Venus / W.T.K. Johnson // Proceedings of the IEEE. – 1991. – Vol. 79, № 6. – P. 777–790.

5. Earth-based 12.6-cm wavelength radar mapping of the Moon: New views of impact melt distribution and mare physical properties / B.A. Campbell, L.M. Carter, D.B. Campbell [et al.] // Icarus. – 2010. – Vol. 208, № 2. – P. 565–573.

6. Alfonzo G.C. Orthogonal Waveform Experiments with a Highly Digitized Radar / G.C. Alfonzo, M. Jirousek, M. Peichl // Proceedings of the 9th European Conference on Synthetic Aperture Radar (Nuremberg, 23–26 April 2012). – Frankfurt: VDE, 2012.

7. Galati G. Orthogonal Waveforms for Multistatic and Multifunction Radar / G. Galati, G. Pavan, A. Franco // Proceedings of the 9th European Radar Conference (Amsterdam, 31 October – 2 November 2012). – N.Y.: IEEE, 2013. – P. 310–313.

8. Garren D.A. Use of P3-coded transmission waveforms to generate synthetic aperture radar images / D.A. Garren, P.E. Pace, R.A. Romero // Proceedings of the 2014 IEEE Radar Conference (Cincinnati, 19–23 May 2014). – N.Y.: IEEE, 2014. – P. 0765–0768.

9. Захаров А.И. Влияние интегрального уровня боковых лепестков ортогональных полиномов сигнала РСА на качество измерений [Influence of the integral level of side lobes of orthogonal polynomials of the SAR signal on the quality of measurements] / А.И. Захаров // Труды 7-ой Всероссийской научной конференции «Радиофизические методы в дистанционном зондировании сред» (г. Муром, 31 мая –2 июня 2016 г.). – Муром: МиВЛГУ, 2016. – С. 377– 381.

10. Mittermayer J. Range ambiguity suppression in SAR by up and down chirp modulation for point and distributed targets / J. Mittermayer, J.M. Martinez // Proceedings of the 2003 International Geoscience and Remote Sensing Symposium (Toulouse, 21–25 July 2003). – N.Y.: IEEE, 2003. – P. 4077–4079.

11. Ипанов Р.Н. Полифазные когерентные дополнительные сигналы [Polyphase coherent complemented signals] / Р.Н. Ипанов // Журнал радиоэлектроники. – 2017. – № 1. – URL: http://jre.cplire.ru/jre/jan17/14/text.pdf.

12. Ipanov R.N. Pulsed Phase-Shift Keyed Signals with Zero Autocorrelation Zone / R.N. Ipanov // Journal of Communications Technology and Electronics. – 2018. – Vol. 63, № 8. – P. 895–901. – https://doi.org/10.1134/S1064226918080077.

13. Ipanov R.N. Radar Signals with ZACZ Based on Pairs of D-Code Sequences and Their Compression Algorithm / R.N. Ipanov, A.I. Baskakov, N. Olyunin, Min-Ho Ka // IEEE Signal Processing Letters. – 2018. – Vol. 25, № 10. – P. 1560–1564. – https://doi.org/10.1109/LSP.2018.2867734.

14. Баскаков А.И. Фазокодоманипулированные радиолокационные сигналы для точного определения дальности и скорости малоразмерных космических объектов [Phase-coded radar signals for determination of the precise range and velocity of small-sized space objects] / А.И. Баскаков, Р.Н. Ипанов, А.А. Комаров // Журнал радиоэлектроники. – 2018. – № 12. – URL: http://jre.cplire.ru/jre/dec18/7/text.pdf.

15. Baskakov A.I. The Use of Phase-shift Keyed Signals with a Zero Autocorrelation Zone in a Multi-position Radar System for Searching and Detecting of Space Debris Objects / A.I. Baskakov, R.N. Ipanov, A.A. Komarov // Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium (Rome, 17–20 June 2019). – N.Y.: IEEE, 2020. – P. 1043–1049. – https://doi.org/10.1109/PIERS-Spring46901.2019.9017759.

16. Ипанов Р.Н. Зондирующие сигналы с нулевой зоной автокорреляции для радиолокаторов с синтезированной апертурой [Probing signals with zero autocorrelation zone for the synthetic aperture radar] / Р.Н. Ипанов // Журнал радиоэлектроники. – 2019. – № 8. – URL: http://jre.cplire.ru/jre/aug19/7/text.pdf.

17. Ipanov R.N. Signals with zero autocorrelation zone for the synthesised aperture radar / R.N. Ipanov // Electronics Letters. – 2019. – Vol. 55, № 19. – P. 1063-1065.  https://doi.org/10.1049/el.2019.1918.

18. Ipanov R.N. Polyphase Radar Signals with ZACZ Based on p-Pairs D-Code Sequences and Their Compression Algorithm. Infocommunications Journal / R.N. Ipanov // – 2019. – Vol. 11, № 3. – P. 21–27.  https://doi.org/10.36244/ICJ.2019.3.4.

19. Ipanov R.N. Phase-Code Shift Keyed Probing Signals with Discrete Linear Frequency Shift Keying and Zero Autocorrelation Zone / R.N. Ipanov, A.A. Komarov, A.P. Klimova // Proceedings of the 2019 International Conference on Engineering and Telecommunication (Dolgoprudny, 20–21 November 2019). – N.Y.: IEEE, 2020. – P. 1–5. – https://doi.org/10.1109/EnT47717.2019.9030566.

20. Ipanov R.N. Phase-Code Shift Keyed Probing Signals with Discrete Linear Frequency Modulation and Zero Autocorrelation Zone / R.N. Ipanov // Infocommunications Journal. – 2020. – Vol. 12, № 1. – P. 45–52. – https://doi.org/10.36244/ICJ.2020.1.7.

21. Ipanov R.N. Pulsed Polyphase Signals with a Zero Autocorrelation Zone and an Algorithm for Their Compression / R.N. Ipanov // Journal of Communications Technology and Electronics. – 2020. – Vol. 65, № 6. – P. 618–625. – https://doi.org/10.1134/S1064226920060121.

22. Ипанов Р.Н. Полифазные частотно-манипулированные зондирующие сигналы с нулевой зоной автокорреляции для радиолокаторов с синтезированной апертурой [Polyphase frequency shift keyed probing signals with zero autocorrelation zone for the synthetic aperture radar] / Р.Н. Ипанов // Журнал радиоэлектроники. – 2020. – № 6. – URL: http://jre.cplire.ru/jre/jun20/11/text.pdf.

23. Ipanov R.N. Pulsed Signals with a Zero Autocorrelation Zone for Synthetic Aperture Radars / R.N. Ipanov // Journal of Communications Technology and Electronics. – 2020. – Vol. 65, № 9. – P. 1022–1028.  – https://doi.org/10.1134/S1064226920080069.

24. Ipanov R.N. Polyphase signals with discrete frequency shift keying and zero autocorrelation zone for the remote sensing radar / R.N. Ipanov, A.A. Komarov // Journal of Applied Remote Sensing. – 2020. – Vol. 14, № 4. – P. 040501. – https://doi.org/10.1117/1.JRS.14.040501.

25. Ipanov R.N. Probing signals with ZACZ for GPR onboard of unmanned aerial vehicle / R.N. Ipanov, A.A. Komarov // Indonesian Journal of Electrical Engineering and Computer Science. – 2021. – Vol. 21, № 1. – P. 110–117. – https://doi.org/10.11591/ijeecs.v21.i1.pp110-117.

26. Ипанов Р.Н. Требования к кодирующей матрице фазокодоманипулированного зондирующего сигнала с нулевой зоной автокорреляции [Requirements for the encoding matrix of a phase-code-keyed probing signal with a zero autocorrelation zone] / Р.Н. Ипанов // Журнал радиоэлектроники. – 2022. – № 7. – URL: https://doi.org/10.30898/1684-1719.2022.7.5.

27. Ipanov R.N. Requirements for the Coding Matrix of a Probing Signal with Zero Auto-correlation Zone for the Remote Sensing Radar / R.N. Ipanov // Sensing and Imaging. – 2023. – Vol. 24, № 1. – 18. – https://doi.org/10.1007/s11220-023-00423-8.

For citation:

Ipanov R.N., Komarov A.A. Application of phase-code shift keyed probing signals with zero autocorrelation zone to improve the quality of measurements in SAR. // Journal of Radio Electronics. – 2024. – №. 1. https://doi.org/10.30898/1684-1719.2024.1.11 (In Russian)