Journal of Radio Electronics. eISSN 1684-1719. 2024. №1
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.1.3
METHOD OF SPACE DEBRIS ELEMENT RECOGNITION
FROM OPTICAL AND RADAR IMAGES BASED
ON NEURAL NETWORK TECHNOLOGIES
O.A. Mishukov, A.N. Smirnov, A.E. Zhitikhin
Mozhaisky Military Space Academy
197198, Russia, Saint-Petersburg, Zhdanovskaya str., 13
The paper was received October 15, 2023.
Abstract. An improved Bayesian method is presented for recognising space debris elements from optical and radar images and is intended to identify potentially hazardous space debris elements for operational spacecraft. A set of informative features for recognising space debris elements is proposed. A modified Bayesian classifier based on a deep neural network with a sequential decision-making procedure is considered as a decisive rule. The quality requirements for the used optical and radar images are defined. The results of recognition probability estimation for different types of space debris elements with different number of used optical and radar images are obtained.
Key words: space debris element, radar image, optical image, Bayesian classifier, decisive rule.
Corresponding author: Mishukov Oleg Alexandrowich, oleg_mish@mail.ru
References
1. Lavrent'ev V.G., Oleinikov I.I., Chervonov A.M. Osnovnye aspekty monitoringa tekhnogennogo sostoyaniya okolozemnogo kosmicheskogo prostranstva dlya obespecheniya bezopasnosti kosmicheskoi deyatel'nosti //Mekhanika, upravlenie i informatika (sm. v knigakh). – 2015. – T. 7. – №. 1. – S. 216-228.
2. Veniaminov S.S., Chervonov A.M. Kosmicheskii musor – ugroza chelovechestvu. 2-e izd., ispr. i dop //M.: IKI RAN. – 2013. – 207 s.
3. Nazarenko A.I. Modelirovanie kosmicheskogo musora. M., IKI RAN. – 2013. – 216 s.
4. Oleinikov I.I., Pavlov V.P., Kovaleva M.V. Metody vyyavleniya i otsenki parametrov opasnykh situatsii pri obespechenii bezopasnosti poleta kosmicheskikh apparatov v okolozemnom kosmicheskom prostranstve //Vestnik Moskovskogo aviatsionnogo instituta. – 2012. – T. 19. – №. 5. – S. 32-37.
5. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii. Izdanie 3-e, ispr. i dop //M.: Tekhnosfera. – 2013. – 1101 s.
6. Khaikin S. Neironnye seti. Polnyi kurs. 2-e izd.: per. s angl. //M.: Izdatel'skii dom «Vil'yamS». – 2006. – 1104 s.
7. Charu A. Neironnye seti i glubokoe obuchenie: uchebnyi kurs: per. s angl. //SPb.: OOO «DialektikA». – 2020. –752 s.
8. Gorelik A.L., Skripkin V.A. Metody raspoznavaniya: ucheb. posobie. 2-e izd., pererab. i dop. //M.: Vyssh. shkola. – 1984. –208 s.
9. Greshilov A.A. Matematicheskie metody prinyatiya reshenii: ucheb. posobie. 2-e izd., ispr. i dop //M.: Izd-vo MGTU im. N.EH. Baumana. – 2014. – 647 s.
10. Lepskii A. E., Bronevich A. G. Matematicheskie metody raspoznavaniya obrazov //Taganrog: izd-vo TTI YUFU. – 2009. – 155 s.
11. Mikhailov G.A., Voitishek A.V. Statisticheskoe modelirovanie. Metody Monte-Karlo: ucheb. posobie. //M.: Izd-vo Yurait. – 2019. – 371 s.
12. Akhmet'yanov V.R., Lutov I.O., Oleinikov M.I. Metod optiko-geometricheskogo modelirovaniya v zadache opredeleniya gabaritnykh i otrazhatel'nykh kharakteristik kosmicheskikh apparatov //Zhurnal radioehlektroniki. – 2015. – №. 4. – S. 16-16.
For citation:
Mishukov O.A., Smirnov A.N., Zhitikhin A.E. Method of space debris element recognition from optical and radar images based on neural network technologies. // Journal of Radio Electronics. – 2024. – №. 1. https://doi.org/10.30898/1684-1719.2024.1.3 (In Russian)