Journal of Radio Electronics. eISSN 1684-1719. 2026. ¹1
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2026.1.9
EFFECTIVE JOSEPHSON INDUCTANCE
OF RF-SQUID AS A FUNCTION
A.S. Averkin 1, L.V. Filippenko 2
1 National University of Science and Technology MISIS,
119049, Moscow, Leninsky Prosp. 4
2 Kotelnikov Institute of Radio Electronics RAS,
125009, Moscow, Mokhovaya St., 11, Bldg. 7
The paper was received October 27, 2025.
Abstract. Radio frequency superconducting quantum interferometers (RF-SQUIDs) are structural elements of nonlinear media used in superconducting metamaterials and superconducting low-noise parametric amplifiers. An expression for the effective Josephson inductance as a function of the external microwave signal power in a two-tone excitation mode is derived. This formula is applied to calculate the effective inductance of a Josephson junction embedded in an RF-SQUID under microwave radiation. The analytically calculated dependences of the resonant frequency and effective Josephson inductance of a non-hysteresis RF-SQUID on microwave power are in good agreement with experimental results.
Key words: superconductivity, RF-SQUID, Josephson junction, microwaves.
Financing: This work was supported by the Russian Ministry of Education and Science within the framework of the Priority 2030 program (NUST MISIS Strategic Technology Project «Quantum Internet»).
Corresponding author: Aleksandr Sergeevich Averkin, averkin.as@misis.ru
References
1. Josephson B. Possible new effects in superconductive tunnelling // Physics Letters, vol. 1, no. 7, pp. 251–253, 1962. https://doi.org/10.1016/0031-9163(62)91369-0
2. Anderson P.W. and Rowell J.M. Probable observation of the Josephson superconducting tunneling effect // Phys. Rev. Lett., vol. 10, pp. 230–232, Mar 1963. https://doi.org/10.1103/PhysRevLett.10.230
3. Shapiro S. Josephson currents in superconducting tunneling: The effect of microwaves and other observations // Phys. Rev. Lett., vol. 11, pp. 80–82, Jul 1963. https://doi.org/10.1103/PhysRevLett.11.80
4. Danchi W.C., Habbal F. and Tinkham M. AC Josephson effect in small-area superconducting tunnel junctions at 604 GHz // Applied Physics Letters, vol. 41, pp. 883–885, 11 1982. https://doi.org/10.1063/1.93685
5. Tien P.K. and Gordon J.P. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films // Phys. Rev., vol. 129, pp. 647–651, Jan 1963. https://doi.org/10.1103/PhysRev.129.647
6. Wildermuth M., Powalla L., Voss J.N., Schön Y., Schneider A., Fistul M.V., Rotzinger H. and Ustinov A.V. Fluxons in high-impedance long Josephson junctions // Applied Physics Letters, vol. 120, no. 11, 2022. https://doi.org/10.1063/5.0082197
7. Koval Y., Fistul M.V., and Ustinov A.V. Enhancement of Josephson phase diffusion by microwaves // Phys. Rev. Lett., vol. 93, p. 087004, Aug 2004. https://doi.org/10.1103/PhysRevLett.93.087004
8. Guozhu S., Yiwen W., Junyu C., Jian C., Zhengming J., Lin K., Weiwei X., Yang Y., Siyuan H. and Peiheng W. Microwave-induced phase escape in a Josephson tunnel junction // Phys. Rev. B, vol. 77, p. 104531, Mar 2008. https://doi.org/10.1103/PhysRevB.77.104531
9. Hizanidis J., Lazarides N., and Tsironis G.P. Robust chimera states in squid metamaterials with local interactions // Phys. Rev. E, vol. 94, p. 032219, Sep 2016. https://doi.org/10.1103/PhysRevE.94.032219
10. Jung P., Butz S., Marthaler M., Fistul M.V., Leppöakangas J., Koshelets V.P. and Ustinov A.V. Multistability and switching in a superconducting metamaterial // Nature Communications, vol. 5, p. 174507, Apr 2014. https://doi.org/10.1038/ncomms4730
11. Zhang D., Trepanier M., Antonsen T., Ott E. and Anlage S.M. Intermodulation in nonlinear squid metamaterials: Experiment and theory // Phys. Rev. B, vol. 94, p. 174507, Nov 2016. https://doi.org/10.1103/PhysRevB.94.174507
12. Lazarides N. and Tsironis G. Superconducting metamaterials // Physics Reports, vol. 752, pp. 1–67, 2018. Superconducting Metamaterials. https://doi.org/10.1016/j.physrep.2018.06.005
13. Jung P., Ustinov A.V., and Anlage S.M. Progress in superconducting metamaterials // Superconductor Science and Technology, vol. 27, p. 073001, may 2014. https://doi.org/10.1088/0953-2048/27/7/073001
14. Jung P., Butz S., Shitov S.V. and Ustinov A.V. Low-loss tunable metamaterials using superconducting circuits with Josephson junctions // Applied Physics Letters, vol. 102, p. 062601, 02 2013. https://doi.org/10.1063/1.4792705
15. Butz S., Jung P., Filippenko L.V., Koshelets V.P., and Ustinov A.V. A one-dimensional tunable magnetic metamaterial: erratum // Opt. Express, vol. 22, pp. 13041–13042, Jun 2014. https://doi.org/10.1364/OE.22.013041
16. Trepanier M., Zhang D., Mukhanov O. and Anlage S.M. Realization and modeling of metamaterials made of rf superconducting quantum-interference devices // Phys. Rev. X, vol. 3, p. 041029, Dec 2013. https://doi.org/10.1103/PhysRevX.3.041029
17. Averkin A.S., Zhuravel A.P., Jung P., Maleeva N., Koshelets V.P., Filippenko L.V., Karpov A. and Ustinov A.V. Imaging coherent response of superconducting metasurface // IEEE Transactions on Applied Superconductivity, vol. 26, no. 3, pp. 1–3, 2016. https://doi.org/10.1109/TASC.2016.2519509
18. Trepanier M., Zhang D., Mukhanov O., Koshelets V.P., Jung P., Butz S., Ott E., Antonsen T.M., Ustinov A.V. and Anlage S.M. Coherent oscillations of driven rf squid metamaterials // Phys. Rev. E, vol. 95, p. 050201, May 2017. https://doi.org/10.1103/PhysRevE.95.050201
19. Abramovitz M. and Stegun I. Handbook of Mathematical Functions. – United States Department of Commerce, National Bureau of Standards Applied Mathematics Series – 55. – 1972. 1062 p.
20. Kiselev E.I., Averkin A.S., Fistul M.V., Koshelets V.P., and Ustinov A.V. Two-tone spectroscopy of a squid metamaterial in the nonlinear regime // Phys. Rev. Res., vol. 1, p. 033096, Nov 2019. https://doi.org/10.1103/PhysRevResearch.1.033096
21. Kadin A.M., Kroemer H. Introduction to superconducting circuits // Physics Today. – 2000. – Ò. 53. – ¹. 5. – Ñ. 184. https://doi.org/10.1063/1.883103
22. Tinkham M. Introduction to superconductivity 2d ed. // Mc Graw-Hill international editions, -1996. ñ. 202. https://doi.org/10.1063/1.883083
23. Apostol T. Calculus. – New York: Wiley, second ed., -1967.
24. Yaakobi O., Friedland L., Macklin C., Siddiqi I. Parametric amplification in Josephson junction embedded transmission lines // Physical Review B, Volume 87, Issue 14, 2013, Pages 144301. https://doi.org/10.1103/PhysRevB.87.144301
25. The unique scientific installation "Cryointegrate" is a "Technological and measuring complex for creating superconducting nanosystems based on new materials" // Kotelnikov IRE RAS – cplire.ru http://www.cplire.ru/rus/UNU/kriointegral/kriointegral.html (In Russian)
For citation:
Averkin A.S., Filippenko L.V. Effective Josephson inductance of RF-SQUID as a function of power of microwave irradiation // Journal of Radio Electronics. – 2026. – ¹. 1. https://doi.org/10.30898/1684-1719.2026.1.9 (In Russian)