Abstract. Detailed
description of key features of such versions of persistent scatterers technique
as SqueeSAR and StaMPS allowing the detection of scattering
surface dynamics in the case of strong temporal decorrelation is presented. The
SqueeSAR technique is a major step forward in persistent scatterers interferometry; it provides identification of distributed scatterers in
addition to traditional point persistent scatterers according to their
statistical behavior and subsequent joint processing. Significant increase of a
total number of persistent scatterers leads to improvement of their spatial
density and an efficiency of the surface dynamics detection. Another important contribution to the set of persistent
scatterers interferometry techniques is so-called StaMPS algorithm; it
proposes a novel persistent scatterers selection approach providing the
identification of natural targets with low backscatter amplitude and stable
phase in the supposition of spatial correlation of phases of backscatter from a
cluster of neighboring surface elements. An estimation of SqueeSAR
and StaMPS techniques efficiency is given briefly from a point of view of
computational load and complexity of the processing chain implementation. An
analysis carried out in the paper confirms the efficiency of SqueeSAR and StaMPS techniques, at the same time the
results obtained form the basis for future additional experimental studies. The
conclusion about mandatory utilization of the techniques under discussion in
future Russian spaceborne SAR missions exploiting interferometry technology in
Earth observation projects may be made.
Key words: SAR, persistent
scatterers, PS, distributed scatterers, DS, PS techniques, SqueeSAR,
StaMPS, DespecKS, RADARSAT, ERS-1, ERS-2, ASAR/ENVISAT.
References
1. A.
A. Feoktistov, A. I . Zakharov, M. A. Gusev, P. V. Denisov. Study of the
dependence of radar remote sensing data processing results on the processing
parameters.
Part 1. Key features of persistent scatterers technique.
Zhurnal Radioelektroniki - Journal of Radio Electronics,
2014, N12. Available at
http://jre.cplire.ru/jre/dec14/5/text.html (In Russian)
2. A.
A. Feoktistov, A. I . Zakharov, M. A. Gusev, P. V. Denisov. Study of the
dependence of radar remote sensing data processing results on the processing
parameters. Part 2. Results of the experiment.
Zhurnal Radioelektroniki - Journal of Radio Electronics,
2014, N12. Available at http://jre.cplire.ru/jre/dec14/6/text.html (In
Russian)
3. A.
A. Feoktistov, A. I . Zakharov, M. A. Gusev, P. V. Denisov.
Studying the dependence of radar data processing results on the processing
parameters. Part 3. Main results of SAR
PALSAR/ALOS data processing obtained over the Moscow territory using PS
technique.
Zhurnal Radioelektroniki - Journal of Radio Electronics,
2016, N7. Available at
http://jre.cplire.ru/jre/jul16/7/text.html
(In Russian)
4. A.
A. Feoktistov, A. I . Zakharov, M. A. Gusev, P. V. Denisov.
Studying the capabilities of small baselines technique via ASAR/ENVISAT and
PALSAR/ALOS data processing by means of SBAS software module of SARSCAPE
package. Part 1. Key features of the technique.
Zhurnal Radioelektroniki - Journal of Radio Electronics,
2015, N9. Available at
http://jre.cplire.ru/jre/sep15/1/text.html
(In Russian)
5. A.
A. Feoktistov, A. I . Zakharov, M. A. Gusev, P. V. Denisov.
Studying the capabilities of small baselines technique via ASAR/ENVISAT and
PALSAR/ALOS data processing by means of SBAS software module of SARSCAPE
package. Part 2. Results of experiments. //
Zhurnal Radioelektroniki - Journal of Radio Electronics,
2015, N9. Available at
http://jre.cplire.ru/jre/sep15/2/text.html
(In Russian)
6. Ferretti, A., Fumagalli, A.,
Novali, F., Prati, C., Rocca, F., Rucci, A., 2011. A new algorithm for
processing interferometric data-stacks: SqueeSAR. IEEE TGRS 49 (9),
3460-3470.
7. Hooper, A., Zebker, H.,
Segall, P., Kampes, B., 2004. A new method for measuring deformation on
volcanoes and other natural terrains using InSAR persistent scatterers. Geophys.
Res. Lett. 31 (23).
8. A. Hooper, P. Segall, and H. Zebker
(2007). Persistent scatterer interferometric synthetic aperture radar for
crustal deformation analysis, with application to Volcan Alcedo, Galapagos. Geophys. Res., 112, B07407, doi:10.1029/2006JB004763.
9. Andrew Hooper, A. A
multi-temporal InSAR method incorporating both persistent scatterer and small
baseline approaches. Geophys. Res. Lett., 35, L16302, doi:10.1029/2008GL034654.
10.
R. Touzi, A review of speckle filtering
in the context of estimation theory. IEEE Trans. Geosci. Remote Sens.,
vol. 40, no. 11, pp. 2392-2404, Nov. 2002.
11. M. A. Stephens, Use of the
Kolmogorov-Smirnov, Cramér-Von Mises and related statistics without
extensive tables. J.R. Stat. Soc. Ser. B (Methodological), vol. 32, no. 1,
pp. 115-122, 1970.
12. Baran I., Stewart M. P.,
Kampes B. M., Perski Z., Lilly P. A Modification to the Goldstein Radar
Interferogram Filter. IEEE Transactions on Geoscience and Remote Sensing.
2003. Vol. 41. No 9. P. 1-9.
13. Hooper, A., Zebker, H.A.,
2007. Phase unwrapping in three dimensions with application to InSAR time
serie. JOSA A 24 (9), 2737-2747.
14. Ferretti, A., Prati, C. and
Rocca, F., 2001. Permanent scatterers in SAR interferometry. IEEE
Transactions on Geoscience and Remote Sensing, 39, pp. 8-20.
15. Crosetto, M., Monserrat O.,
Cuevas-González M., Devanthéry N., Crippa B. Persistent Scatterer
Interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing
115 (2016), pp. 78-89.
16. Crosetto, M., Monserrat, O.,
Bremmer, C., Hanssen, R., Capes, R., Marsh, S., 2009. Ground motion monitoring
using SAR interferometry: quality assessment. Eur. Geol. 26, pp. 12-15.