"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 7, 2019

contents of issue      DOI  10.30898/1684-1719.2019.7.6     full text in Russian (pdf)  

UDC 681.518.3



V. I. Smirnov 1,2, V. A. Sergeev 1,2, A. A. Gavrikov 1, A. M. Shorin 2

1 Ulyanovsk branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Goncharova 48/2, Ulyanovsk 432071, Russia

2 Ulyanovsk State Technical University, Severny Venets 32, Ulyanovsk, 432027, Russia


The paper is received on July 12, 2019


Abstract. The paper describes the results of measuring cross coupling characteristics of power MOSFET-modules. Measurements are based on the method using device under test heating by harmonically varying power and measuring the temperature response to such impact. Measurements were performed by Apparatus for Measurement of Thermal Impedance which allows to heat each transistor of power module and to measure the temperature response of other transistors. Measuring thermal impedance matrix components was done by analysis of the thermal impedance on modulation frequency dependence. This method can be used not only for MOSFET- or IGBT-transistors but also for hybrid integrated circuits and PCBs.

Keywords: thermal resistance, thermal impedance matrix, power modules, modulation method.


1.    ronov V.L., Fedotov Ya.. Issledovaniye i ispytaniye poluprovodnikovykh priborov [Research and test of semiconductor devices]. oscow, Vysshaya Shkola Publ., 1975. 325 p. (In Russian).

2.    Vyahirev V. Measurement of thermal characteristics of semiconductor electronic components. ehnologii v electronnoi promyshlennosti [Technology in the electronics industry]. 2013. No.3. P. 90-92. (In Russian).

3.     Brückner T., Bernet S. Estimation and Measurement of Junction Temperatures in a Three-Level Voltage Source Converter. IEEE Transactions on Power Electronics. 2007. Vol. 22. P. 312.

4.   Steffens O., Szabo P., Lenz M., Farkas G. Thermal transient characterization methodology for single-die and stacked structure. 21st IEEE SEMI-THERM Symposium. 2005. P. 10652221.

5.     Davidson J.N., Stone D.A., Foster M.P., Gladwin D.T. Measurement and Characterization Technique for Real-Time Die Temperature Prediction of MOSFET-Based Power Electronics. IEEE Transactions on Power Electronics. 2016. Vol. 31. P. 43784388.

6.     Davidson J.N., Stone D.A., Foster M.P. Real-time prediction of power electronic device temperatures using PRBS-generated frequency-domain thermal cross-coupling characteristics. IEEE Transactions on Power Electronics. 2015. Vol. 30. P. 29502961.

7.     Wei L., Kerkman R.J., Lukaszewski R.A., Brown B.P., Gollhardt N., Weiss B.W. Junction Temperature Prediction of a Multiple-chip IGBT Module under DC Condition. 41st IAS Annual Meeting. 2006. P. 754762.

8.    Smirnov V.I., Gavrikov A.A., Shorin A.M. The method for measuring thermal resistance components of semiconductor devices and its practical implementation. Avtomatizatsiya protsessov upravleniya [Automation of management processes]. 2017. No. 2 (48). P. 98105. (In Russian).

9.    Horovitz P. Hill W. The Art of Electronics. Third Edition. Cambridge University Press, 2015.

10. Smirnov V.I., Sergeev V.A., Gavrikov A.A., Shorin A.M. Measurement of thermal impedance of high-power transistors. Radiotekhnika [Radio Engineering]. 2017. No. 6. P. 83-90. (In Russian).


For citation:

V. I. Smirnov, V. A. Sergeev, A. A. Gavrikov, A. M. Shorin. Measurement of cross thermal resistance of power modules. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 7. Available at http://jre.cplire.ru/jre/jul19/6/text.pdf

DOI  10.30898/1684-1719.2019.7.6