Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. ¹7
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.7.12

Algorithm for Multiple Extended Target Tracking

 

Le Ba Thanh

 

Moscow Institute of Physics and Technology
(National Research University)
141700, Russia, Moscow region, Dolgoprudny, Institutskiy lane, 9

 

The paper was received July 5, 2023.

 

Abstract. This paper introduces a novel algorithm for multi–extended object tracking, which is based on probabilistic–statistical modelling, machine learning, and optimization theory. The proposed approach encompasses methods for modelling the state of extended objects, data association, and predicting and updating the state of extended objects at each time step. The performance of the algorithm was assessed and compared with other existing algorithms using simulation modelling in MATLAB. This simulation emulates scenarios in which extended objects are tracked while moving under various noise levels. Simulation results demonstrate that the algorithm can effectively detect and track the trajectories of multiple extended objects under different noise levels, utilizing both linear and non–linear measurements from an array of sensors. Furthermore, the algorithm estimates not only the number and kinematic states of the targets but also provides an approximate evaluation of their size. The performance of the proposed algorithm, in terms of accuracy in target number and state estimation, is superior to that of comparable algorithms, particularly in high–noise environments. Potential applications of this algorithm include tracking moving targets in the context of autonomous driving, driver assistance, safety assurance, and various other domains.

Keywords: multi object tracking, set of distributed targets, simulation modeling.

Corresponding author: Le Ba Thanh, thanhlb@phystech.edu

References

1. Le Ba Thanh. Nonlinear Filtering for the State of Extended Targets. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. https://doi.org/10.30898/1684-1719.2023.7.8 (In Russian)

2. Thanh L. B., Alexandrovich P. D., Ruben P. Multi-object multi-sensor tracking simulation using poisson multi-bernoulli mixture filter // 2021 23rd International Conference on Digital Signal Processing and its Applications (DSPA). – IEEE, 2021. – P. 1-6. https://doi.org/10.1109/DSPA51283.2021[.9535849

3. Granström K., Orguner U. Estimation and maintenance of measurement rates for multiple extended target tracking // 2012 15th International Conference on Information Fusion. – IEEE, 2012. – P. 2170-2176. https://ieeexplore.ieee.org/document/6290567

4. Thanh L. B. Data Association for Multi-Object Tracking Using Assignment Algorithms // 2021 International Conference Engineering and Telecommunication (En&T). – IEEE, 2021. – P. 1-5. https://doi.org/10.1109/EnT50460.2021.9681742

5. Dietmayer K., Kellner D., Klappstein J. Grid-based dbscan for clustering extended objects in radar data // IEEE intelligent vehicles symposium, Alcala de Henares, Spain. – 2012. https://doi.org/10.1109/IVS.2012.6232167

6. Rahmathullah A. S., García-Fernández Á. F., Svensson L. Generalized optimal sub-pattern assignment metric // 2017 20th International Conference on Information Fusion (Fusion). – IEEE, 2017. – P. 1-8. https://doi.org/10.23919/ICIF.2017.8009645

7. Konovalov A. A. Fundamentals of trajectory processing of radar information // Saint Petersburg: SPSETU" LETI. – 2013, 2014. https://etu.ru/assets/files/nauka/nii/2013---Konovalov.-Osnovi-traektornoj-obrabotki.-Chast-1.pdf , https://etu.ru/assets/files/nauka/nii/2014---Konovalov.-Osnovi-traektornoj-obrabotki.-Chast-2.pdf(In Russian)

8. Bureneva O. I. et al. A Prototype of Automotive 77 GHz Radar // Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioehlektronika. – 2021. – V. 24. – ¹. 3. – P. 22-38. https://doi.org/10.32603/1993-8985-2021-24-3-22-38 (In Russian)

9. Kicherova A. D., Medvedev E. R.Software realization of secondary signal processing in automotive radar // Navigatsiya i upravlenie dvizheniem. – 2021. – P. 277-279. http://www.elektropribor.spb.ru/upload/medialibrary/361/KMU-2021-ALL_-2211.pdf (In Russian)

10. Granström K. et al. Gamma Gaussian inverse Wishart probability hypothesis density for extended target tracking using X-band marine radar data // IEEE Transactions on Geoscience and Remote Sensing. – 2015. – V. 53. – ¹. 12. – P. 6617-6631. https://doi.org/10.1109/TGRS.2015.2444794

For citation:

Le Ba Thanh. Algorithm for multiple extended target tracking. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. ¹7. https://doi.org/10.30898/1684-1719.2023.7.12 (In Russian)