Journal of Radio Electronics. eISSN 1684-1719. 2025. №7
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.7.4
THE ANISOTROPY INFLUENCE TO PHASE DIAGRAM
OF TWO-SUBLATTICE FERROMAGNETIC
V.V. Koledov, D.A. Suslov, V.I. Shcheglov
Kotelnikov IRE RAS,
125009, Moscow, st. Mokhovaya, 11-7
The paper was received March 25, 2025.
Abstract. The task about equilibrium orientation of two-sublattice ferrimagnetic magnetizations in constant field with anisotropy axis which is parallel to field direction is solved. The cases of anisotropy type “easy axis” and “easy plane” are investigated. It is found the equation system for magnetizations both sublattices with anisotropy. It is proposed the algorithm for numerical resolution of sublattice magnetization orientation corners equation system. It is investigated the anisotropy field by first variant as double relation of anisotropy constant to magnetization and also with dependence of this field from temperature. It is constructed the phase diagrams with both anisotropy field variants and also with direct introduction of anisotropy constant. It is found the difference of diagram in these three cases which consist of different branches levels higher and lower of case when anisotropy is absent. It is introduced the concept of polar anisotropy field which takes into consideration the dependence of anisotropy field from orientation of magnetization. It is shown that the construction of diagram by introducing of polar anisotropy field is equivalent to introducing of anisotropy constant. It is proposed some recommendations for development of this work so as consideration of demagnetizing field, constant anisotropy normalization and possibility of material parameters from phase diagram.
Keywords: mixed garnet ferrite, compensation temperature, sublattices magnetization, magnetic anisotropy.
Financing: The work was carried out within the framework of the state assignment of the V.A. Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences.
Corresponding author: Shcheglov Vladimir Ignatyevich, vshcheg@cplire.ru
References
1. Lax B., Button K.J. Microwave ferrites and ferrimagnetics. New York, San Francisco, Toronto, London: McGraw-Hill Book Company. 1962.
2. Gurevich A.G. Magnetic resonance in ferrites and antiferromagnetics. M.: Nauka. 1973.
3. Gurevich A., Melkov G. Magnetic oscillations and waves. M.: Nauka-Fizmatlit. 1994.
4. Kurushin E.P., Nefedov E.I. Application of thin mono-crystal ferrite films in microwave designs. // Microelectronics. 1977. V.77. №6. P.549-561.
5. Glass H.L. Ferrite films for microwave and millimeter wave devices. // Proc. IEEE. 1988. V.76. №2. P.151-158.
6. Shavrov V.G., Shcheglov V.I. Magnetostatic waves in nonuniform fields. M.: Fizmatlit. 2016.
7. Shavrov V.G., Shcheglov V.I. Magnetostatic and electromagnetic waves in complex structures. M.: Fizmatlit. 2017.
8. Shavrov V.G., Shcheglov V.I. Ferromagnetic resonance in conditions of orientation transition. M.: Fizmatlit. 2018.
9. Shavrov V.G., Shcheglov V.I. Dynamics of magnetization in conditions of its orientation changing. M.: Fizmatlit. 2019.
10. Shavrov V.G., Shcheglov V.I. Spin waves in media with exchange and dissipation. M.: Fizmatlit. 2021.
11. Lisovsky F.V. Physics of bubble domains. M.: Sov. Radio. 1979.
12. Malozemoff A.P., Slonczewski J.C. Magnetic domain walls in bubble materials. Academic Press. New York London Toronto Sydney San Francisco. 1979.
13. Romanova I. Magnetoresistive memory MRAM of company Everspin Technologies. // Electronics STB. 2014. №8.
14. Kirilyuk A., Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order. // Rev. Mod. Phys. 2010. V.82. №3. P.2731.
15. Bigot J.V., Vomir M. Ultrafast magnetization dynamics of nanostructures. // Ann. Phys. (Berlin). 2013. V.525. №1-2. P.2.
16. Vlasov V.S., Golov A.V., Kotov L.N., Shcheglov V.I., Lomonosov A.M., Temnov V.V. The Modern Problems of Ultrafast Magnetoacoustics (Rewiev). // Acoust. Phys. 2022. V.68. №1. P.18-47.
17. Belov K.P., Zaytseva M.A. Rare-earth magnetic materials. // Sov. Phys. Usp. 1972. V106. №2. P.365-369.
18. Belov K.P., Zvezdin A.K., Kadontseva A.M., Levitin R.Z. Transitions of spin re-orientation in rare-earth magnetics. // Sov. Phys. Usp. 1976. V119. №3. P.447-486.
19. Belov K.P., Zvezdin A.K., Kadontseva A.M., Levitin R.Z. Orientational transitions in rare-earth magnetics. M.: Nauka. 1979.
20. Clark A.E., Callen E. Neel ferromagnets in large magnetic fields. // J. Appl. Phys. 1968. V.39. №13. P.5972-5082.
21. Goranskiy B.P., Zvezdin A.K. About turn development of ferrimagnetic sublattices in magnetic field. // JETP Letters. 1969. V.10. P.196-200.
22. Suslov D.A., Shavrov V.G., Shcheglov V.I. The calculation algorithm of sublattice magnetizations in two-lattice ferromagnet with compensation point. Part 1. Phase diagram. // Journal of Radio Electronics. 2024. №5. https://doi.org/10.30898/1684-1719.2024.5.2
23. Suslov D.A., Shavrov V.G., Shcheglov V.I. The calculation algorithm of sublattice magnetizations in two-lattice ferromagnet with compensation point. Part 2. Power index approximation. // Journal of Radio Electronics. 2024. №5. https://doi.org/10.30898/1684-1719.2024.5.3
24. Suslov D.A., Shavrov V.G., Shcheglov V.I. Phase diagram of two-sublattice ferrimagnetic with compensation point in presence of uniaxial anisotropy. // Journal of Radio Electronics. 2025. №2. https://doi.org/10.30898/1684-1719.2025.2.1
25. Sushkevich A.K. Fundamentals of higher algeba. Gos.izd.teckh-teor.lit. M.L., 1941.
26. Demidovich B.P., Maron I.A. Foundations of computational mathematics. M.: Fizmatgiz. 1963.
27. Suslov D.A., Shavrov V.G., Shcheglov V.I. The calculation algorithm of sublattice magnetization in two-sublattice ferromagnet with compensation point. Approximation by the Brillouin function. // Journal of Radio Electronics. 2024. №11. https://doi.org/10.30898/1684-1719.2024.11.13
For citation:
Koledov V.V., Suslov D.A., Shcheglov V.I. The anisotropy influence to phase diagram of two-sublattice ferromagnetic with compensation point // Journal of Radio Electronics. – 2025. – № 7. https://doi.org/10.30898/1684-1719.2025.7.4 (In Russian)