"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 6, 2016

contents             full texthtml,   pdf   

usage of a priori information in dynamical inverse problems of passive acoustic thermometry

A. A. Anosov1,2

 1Kotel’nikov Institute of Radio-Engineering and Electronics of RAS

2 I.M. Sechenov First Moscow State Medical University

The paper is received on June 1, 2016

Abstract. Experimental results of temperature distribution reconstruction in the model plasticine objects and the human body were obtained with the help of passive acoustic thermometry. The objects under the study were heated and cooled and could be moved relatively receiving array. The array consisted of 14 probes based on broadband 1.6–2.5 MHz disc-shaped ultrasonic detectors with an 8 mm aperture. The probe threshold sensitivity was 0.3 K for the integration time in 10 s. The portable computer thermograph was used to measure the surface temperature of the human body. The temperature was measured in five experiments with the cooled fixed cylinder and forefinger (1), shifted heated cylinder (2), heated fixed parallelepiped (3), cooled the fixed parallelepiped and hand (4), heated fixed sphere (5). A priory information about the temperature distributions was used in reconstruction algorithms. Òhe temperature distributions were approximated by 1D, 2D, 3D Gaussians with time-varying parameters. The algorithms allowed to reconstruct four (in the 1–3 experiments) or five parameters (in the 5 experiment): the two or three spatial coordinates, size or two sizes and maximum temperature of heated region. The symmetrical distribution was reconstructed in the fourth experiment. In this case the only parameter was detected. The electronic journal format allows to demonstrate the time-varying temperature distributions with the help of an animation. The detection accuracy of the geometrical (about 1-2 mm) and temperature (about 0.5-1 K) parameters of the temperature distributions is acceptable for medical applications. The results were presented at Conference "Radars and Communications 9".

Key words: thermal acoustic radiation, acoustic thermometry, a priory information, inverse problems.

References

1.     Godik E.E., Gulyaev Yu.V. Radiophysics looks at a human body. Radiotechnika – Radio engineering, 1991, No. 8, pp. 51-62. (In Russian)

2.     Inoue T., Shimizu H., Fujimura M., Saito A., Yoshioka Y., Matsuda T., Tominaga T. Noninvasive measurement of human brain temperature adjacent to arteriovenous malformation using 3.0 T magnetic resonance spectroscopy. Clinical Neurology and Neurosurgery, 2013, Vol. 115, No. 4, pp. 445-449. DOI: http://dx.doi.org/10.1016/j.clineuro.2012.06.022

3.     Maass-Moreno R., Damianou C.A. Noninvasive temperature estimation in tissue via  ultrasound echo-shifts. Part I. Analytical model. J. Acoust. Soc. Am., 1996, Vol. 100, No.4, pp. 2514.  Available at: http://dx.doi.org/10.1121/1.417359

4.     Dubois L., Sozanski J.-P., Tessier V., Camart J.-C., Fabre J.-J., Pribetich J., Chive M. Temperature control and thermal dosimetry by microwave radiometry in hyperthermia. IEEE Trans. Microwave Theory Tech., 1996, Vol. 44, No. 10, pp. 1755-1761. DOI: 10.1109/22.539932

5.     Rieke V., Butts Pauly K. MR Thermometry. J. Magn. Reson. Imaging, 2008, Vol. 27, No. 2, pp. 376–390. DOI: 10.1002/jmri.21265

6.     Anosov A.A., Sergeeva T.V., Alekhin A.I., Belyaev R.V., Vilkov V.A., Ivannikova O.N., Kazanskii A.S., Kuznetsova O.S., Less Yu.A., Mansfel’d A.D., Obukhov Yu.V., Sanin A.G., Sharakshane A.S., Lukovkin A.V. Acoustothermometric accompaniment of the laser-induced interstitial hyperthermia of mammary and thyroid glands. Biomed. Radioelektr. – Biomed. Radionics, 2008, No. 5, pp. 67-73. (In Russian)

7.     Babii V.I. The transfer of acoustic energy in the absorbing and emitting medium. Mor. Gidrofiz. Issled. – Marine hydrophysical study, 1974, No. 2, pp. 189-192. (In Russian)

8.     Bowen T. Passive remote temperature sensor system. US Patent 4246784. Jan. 27. 1981.

9.     Gulyaev Yu.V., Godik E.E., Dementienko V.V., Pasechnik V.I., Rubtsov A.A. On the possibilities of the acoustothermography of biological objects. Dokl. Akad. Nauk SSSR – Reports of the Academy of Sciences, 1985, Vol. 283, No. 6, pp. 1495-1499. (In Russian)

10.Bowen T. Acoustic radiation temperature for noninvasive thermometry. Automedica (UK), 1987, Vol. 8, No. 4, pp.247–267.

11.Mirgorodskii V.I., Gerasimov V.V., Peshin S.V. Spatial distribution of incoherent radiation sources by correlation processing. JETP Letters, 1995, Vol. 62, No. 3, pp. 252-257.

12.Passechnik V.I., Bograchev K.M., Anosov A.A. Fundamentals and prospects of passive thermoacoustic tomography. Critical Reviews in Biomedical Engineering, 2000, Vol. 28, No. 3–4, pp. 603–640. DOI: 10.1615/CritRevBiomedEng.v28.i34.410

13.Burov V.A., Darialashvili P.I., Rumyantseva O.D. Active-passive thermoacoustic tomography. Acoust. Phys., 2002, Vol. 48, No. 4, pp. 412-422. DOI: 10.1134/1.1494019

14.Anosov A.A., Pasechnik V.I., Isrefilov M.G. Reconstruction of a two-dimensional distribution of the internal temperature of a model object by passive thermoacoustic tomography. Acoust. Phys., 1999, Vol. 45, No. 1, pp. 14-18.

15.Anosov A.A., Belyaev R.V., Vilkov V.A., Kazanskii A.S., Mansfel’d A.D., Subochev P.V. Dynamic deep temperature recovery by acoustic thermography using neural networks. Acoust. Phys., 2013, Vol. 59, No. 6, pp. 717-721. DOI: 10.1134/S1063771013050011

16.Krotov E.V., Zhadobov M.V., Reyman A.M., Volkov G.P., Zharov V.P. Detection of thermal acoustic radiation from laser-heated deep tissue. Appl. Phys. Lett., 2002, Vol. 81, No. 21, pp. 3918-3920. Available at: http://dx.doi.org/10.1063/1.1521245

17.Gulyaev Yu.V., Bograchev K.M., Borovikov I.P., Obukhov Yu.V., Passechnik V.I. Passive thermoacoustic tomography: methods and approaches. Journal of communications technology and electronics, 1998, Vol. 43, No. 9, pp. 1061-1067.

18.Bograchev K.M., Passechnik V.I. Standard source method in passive acoustic thermal tomography. Acoust. Phys., 2003, Vol. 49, No. 4, pp. 396–401. DOI: 10.1134/1.1591293

19.Bosnyakov M.S., Obukhov Yu.V. Optimum wavelet basis for representation of the functions satisfying the head conduction equation. Pattern Recognition and Image Analysis, 2003, Vol. 13, No. 1, pp. 621–624.

20.Anosov A.A., Belyaev R.V., Vilkov V.A., Dvornikova M.V., Dvornikova V.V., Kazanskii A.S., Kuryatnikova N.A., Mansfel’d A.D. Acousto-thermometric recovery of the deep temperature profile using heat conduction equation. Acoust. Phys., 2012, Vol. 58, No. 5, pp. 542-548. DOI: 10.1134/S1063771012030037

21.Anosov A.A., Belyaev R.V., Vilkov V.A., Zakaryan A.V., Kazanskii A.S., Mansfel’d A.D., Subochev P.V. Reconstruction of the deep temperature by the acoustothermometric method and with consideration for the heat conduction equation. Journal of Communications Technology and Electronics, 2015, Vol. 60, No. 8, pp. 919-927. DOI: 10.1134/S106422691508001X

22.Ksenofontov S.Yu., Mansfel’d A.D., Reiman A.M. Reconstructive acoustic thermotomography of biological objects. Radiophysics and Quantum Electronics, 1997, Vol. 40, No. 6, pp. 498-503. DOI: 10.1007/BF02675926

23.Krotov E.V., Ksenofontov S.Yu., Mansfel’d A.D., Reiman A.M., Sanin A.G., Prudnikov M.B. Experimental study of the potential of multichannel acoustic thermotomography. Radiophysics and Quantum Electronics, 1999, Vol. 42, No. 5, pp. 425-430. DOI: 10.1007/BF02677623

24.Anosov A.A., Kazanskii A.S., Mansfel’d A.D., Sharakshane A.S. Detection of heated region's location and size by dynamical acoustical thermography. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2013, No. 3. Available at: URL: http://jre.cplire.ru/jre/mar13/11/text.pdf. (In Russian)

25.R. A. Hessemer, T. Perper, T. Bowen. Correlation thermotomography. US Patent 4416552. 1983.

26.Anosov A.A., Barabanenkov Yu.N., Sel’skii A.G. Correlation reception of thermal acoustic radiation. Acoust. Phys., 2003, Vol. 49, No. 6, pp. 615-619. DOI: 10.1134/1.1626171

27.Weaver R.L., Lobkis O.I. Elastic wave thermal fluctuations, ultrasonic waveforms by correlation of thermal phonons. J. Acoust. Soc. Am., 2003, Vol. 113, No.5, pp. 2611–2621. Available at: http://dx.doi.org/10.1121/1.1564017

28.Burov V.A., Darialashvili P.I., Evtukhov S.N., Rumyantseva O.D. Experimental modeling of the processes of active-passive thermoacoustic tomography. Acoust. Phys., 2004, Vol. 50, No. 3, pp. 243-254. DOI: 10.1134/1.1739492

29.Mirgorodskii V.I., Gerasimov V.V., Peshin S.V. Experimental studies of passive correlation tomography of incoherent acoustic sources in the megahertz frequency band. Acoust. Phys., 2006, Vol. 52, No. 5, pp. 606-612. DOI: 10.1134/S1063771006050150

30.Godin O.A. Retrieval of Green’s functions of elastic waves from thermal fluctuations of fluid-solid systems. J. Acoust. Soc. Am., 2009, Vol. 125, No. 4, pp. 1960–1970. Available at: http://dx.doi.org/10.1121/1.3082101

31.Anosov A.A., Pasechnik V.I., Shablinskii V.V. Spatial resolution of acoustotermography and microwave radiometry. Akust. Zhurn. Acoust. Phys., 1991, Vol. 37, No. 4, pp. 610-615. (In Russian)

32.Vilkov V.A., Krotov E.V., Mansfel’d A.D., Reiman A.M. Application of focusing arrays to the problems of acoustic brightness thermometry. Acoust. Phys., 2005, Vol. 51, No. 1, pp. 63-70. DOI: 10.1134/1.1851630

33.Krotov E.V., Reiman A.M., Subochev P.V. Synthesis of a Fresnel acoustic lens for acoustic brightness thermometry. Acoust. Phys. 2007, Vol. 53, No. 6, pp. 688-693. DOI: 10.1134/S1063771007060061

34.Subochev P.V., Mansfel’d A.D., Belyaev R.V. Multifrequency acoustic thermography during laser hyperthermia: physical modeling. Vestn. NNGU im N. I. Lobachevskogo – Vestnik of Lobachevsky state university of Nizni Novgorod, 2010, No. 5 (1), pp. 67-74. (In Russian)

35.Anosov A.A., Kazansky A.S., Subochev P.V., Mansfel'd A.D., Klinshov V.V. Passive estimation of internal temperatures making use of broadband ultrasound radiated by the body. J. Acoust. Soc. Am., 2015, Vol. 137, No. 4, pp. 1667-1674. DOI: 10.1121/1.4915483

36.Anosov A.A., Belyaev R.V., Klinshov V.V., Mansfel’d A.D., Subochev P.V. Passive broadband acoustic thermometry. Technical physics, 2016, Vol. 86, No. 4, pp. 597-602. DOI: 10.1134/S1063784216040058

37.Mansfel’d A. D. Acoustothermometry: current status and prospects. Acoust. Phys., 2009, Vol. 55, No. 4-5, pp. 556-566. DOI: 10.1134/S1063771009040125

38.Anosov A.A., Belyaev R.V., Vilkov V.A., Kazanskii A.S., Mansfel’d A.D., Sharakshane A.S. Determination of the dynamics of temperature variation in a modal object by acoustic thermography. Acoust. Phys., 2008, Vol. 54, No. 4, pp. 464-468. DOI: 10.1134/S1063771008040040

39.Anosov A.A., Nemchenko O.Yu., Less Yu.A., Kazanskii A.S., Mansfel’d A.D. Possibilities of acoustic thermometry for controlling targeted drug delivery. Acoust. Phys., 2015, Vol. 61, No. 4, pp. 488-493. DOI: 10.1134/S1063771015040028

40.Kazansky A.S. Using artificial neural networks for processing acoustothermometrical data. Nelineinyi mir – Nonlinear World, 2011, Vol. 9, No. 2, pp. 112-113. (In Russian)

41.Anosov A.A., Balashov I.S., Belyaev R.V., Vilkov V.A., Garskov R.V., Kazanskii A.S., Mansfel’d A.D., Shcherbakov M.I. Acoustic thermometry of the patient brain with traumatic brain injury. Biophysics, 2014, Vol. 59, No. 3, pp. 447-452. DOI: 10.1134/S0006350914030026

42.Anosov A.A., Belyaev R.V., Vilkov V.A., Kazanskii A.S., Mansfeld A.D., Sharakshane A.S. Dynamic acoustothermography. Acoust. Phys., 2009, Vol. 55, No. 4-5, pp. 454-462. DOI: 10.1134/S1063771009040022

43.Anosov A.A., Sharakshane A.A., Kazanskii A.S., Mansfel’d A.D., Sanin A.G., Sharakshane A.S. Directional pattern of broadband acoustothermometric sensor. Acoust. Phys., 2016, Vol. 62. In press.

44.Passechnik V.I. Verification of the physical basis of acoustothermography. Ultrasonics, 1994, Vol. 32, No. 4, pp. 293-299. Available at: http://dx.doi.org/10.1016/0041-624X(94)90009-4

45.Duck F. Physical properties of tissue. London, Academic Press. 1990. 346 p.

46.Anosov A.A., Pasechnik V.I., Bograchev K.M. Passive thermoacoustic tomography of a human hand. Acoust. Phys., 1998, Vol. 44, No. 6, pp. 629-634.

47.Anosov A.A., Belyaev R.V., Vilkov V.A., Dvornikova M.V., Dvornikova V.V., Kazanskii A.S., Kuryatnikova N.A., Mansfeld A.D. Acoustothermometric study of the human hand under hyperthermia and hypothermia. Acoust. Phys., 2013, Vol. 59, No. 1, pp. 103-108. DOI: 10.1134/S1063771013010028

48.Anosov A.A., Kazanskii A.S., Mansfel’d A.D., Sharakshane A.S. Acoustic Thermometric Reconstruction of a Time-Varying Temperature Profile. Acoust. Phys., 2016, Vol. 62, No. 2, pp. 255-261. DOI: 10.1134/S1063771016020032

49. Passechnik V.I. The influence of sound scattering on the acoustobrightness temperature. Ultrasonics, 1996, Vol. 34, No. 6, pp. 677-685. DOI:10.1016/0041-624X(96)00051-0

50.Anosov A.A., Belyaev R.V., Vilkov V.A., Kazanskii A.S., Kuryatnikova N.A., Mansfel’d A.D. Acoustic thermometric data on blood flow and thermal output in forearm under physical pressure. Acoust. Phys., 2013, Vol. 59, No. 4, pp. 482-487. DOI: 10.1134/S1063771013040027

51.Schmidt R.F., Thews G. (eds) Human Physiology. 2nd ed. Berlin, Springer-Verlag. 1989. 828 p.