"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 6, 2019

contents of issue      DOI  10.30898/1684-1719.2019.6.11     full text in Russian (pdf)  

UDC 517.9

Hypothesis principles for the conditions of the rhythmic cardiac chamber activity within the framework of certain mathematical models

 

 A. P. Chernyaev

Moscow Institute of Physics and Technology (State University),
9 Institutsky Per., Dolgoprudny, Moscow region 141700, Russia

 

The paper is received on May 27, 2019

 

Abstract. On the basis of the comparative characteristics of a certain class of the cardiac chamber models, the mechanical provisions of the hypothesis for the rhythmic activity of the cardiac chamber are developed. This hypothesis should be added to the physical conditions on the basis of which the considered models of heart activity are constructed. The provisions of this hypothesis are developed gradually in the course of successive consideration of these models. To achieve the greatest clarity, much attention is paid to the simplified single-chamber heart model, available in the simplest organisms. Since for the present study we compare the advantages and disadvantages of the most widely popular models of the heart activity, the theoretical and practical significance of the present study consists in both in the formulation of problems for finding exact solutions, and for developing approximate algorithms and different aspects of numerical analysis.

Key words: hemodynamics, free and forced oscillations, oscillating solutions.

References

1. Kholodov A.S. Some dynamic models of external respiration and blood circulation, taking into account their connectivity and transfer of substances. Komputernie modely i progress  mediciny [Computer models and progress of medicine]. Moscow, Nauka Publ., 2001. 392 p., pp. 127–163. (In Russian).

2. Simakov S.S. Numerical study of the dynamics of systemic blood flow in blood loss. Informatsionnie technologii modelirovaniia i upravleniia - Information technologies for modeling and management. 2006. Vol. 8. No. 33. pp. 931–938. (In Russian).

3. Simakov S.S., Kholodov A.S. Numerical study of the oxygen content in human blood at low-frequency effects. Matematicheskoe modelirovanie - Mathematical modeling. 2008. Vol. 20. No. 4. pp. 87–102. DOI: https://doi.org/10.1134/S2070048209020112 (In Russian).

4. Vasilevsky, Yu.V., Salamatova, V.Yu., Simakov, S.S. On the elasticity of blood vessels in one-dimensional models of hemodynamics. Journal of computational mathematics and mathematical physics. 2015. Vol. 55. No. 9. pp. 1599–1610. https://doi.org/10.7868/S004446691509015X (In Russian).

5. Bessonov N., Sequeira A., Simakov S., Vassilevskii Yu., Volpert V. Methods of Blood Flow Modelling.  Math. Model. Nat. Phenom. 2016. Vol. 11. No. 1.pp. 1–25. DOI: 10.1051/mmnp/201611101

6. Simakov S.S. Modern methods of mathematical modeling of blood flow using averaged models. Kompjuternie issledovaniia i modelirovanie - Computer Research and Modeling. 2018. Vol. 10, No. 5. pp. 581–604. DOI: https://doi.org/10.20537/2076-7633-2018-10-5=581-604 (In Russian).

7. Kalyabin G.A. Primenenie matematicheskogo analiza k opisaniiu protsessov reparatsii infarkta miokarda I prognozirovaniiu kardiologicheskikh zabolevanii. [Application of mathematical analysis to the description of the processes of myocardial infarction repair and prediction of cardiac diseases]. Student book. Moscow, RUDN, 2008. 144 p. (In Russian).

8. Lebedenko I.S., Novoselova E.S., Rakityanskaya L.S., Efimtseva Yu.A. Mathematical model of the heart. Biotechnosfera - Biotechnosphere. 2009. Vol. 3. No. 3. pp. 24–31. (In Russian).

9. Koshelev V.B., Mukhin S.I., Sosnin N.V., Favorsky A.P. Matematicheskie modeli kvazi-odnomernoi gemodinamiki. [Mathematical models of quasi-one-dimensional hemodynamics]. Toolkit . Moscow, MAX Press Publ., 2010.  114 p. (In Russian).

10. Volobuev A.N. Fluid flow in tubes with elastic walls. Uspekhi Fizicheskikh Nauk – Physics-Uspekhi. 1995. Vol. 165, No. 2, pp. 177–186. (In Russian).

11. Abdel Latif M.S. Symmetry analysis and some exact solutions of the modified Korteweg – de Vries equation with variable coefficients arising in arterial mechanics. Izvestiya SGU. Novaia seriia. Matematika. Mechanika. Informatica. – News SGU. New series. Mathematics. Mechanics. Computer science. 2011. Vol. 11, No. 2. pp. 42–48. (In Russian).

12. Mezentseva L.V. Teoreticheskie osnovi narushenii serdechnogo ritma pri ekstremalnikh vneshnich vozdeistviiach. [Theoretical foundations of cardiac arrhythmias with extreme external influences]. Abstract of dissertation for the degree of Doctor of Biological Sciences. 03.03.01 physiology, 03.01.02 - biophysics. Moscow, 2014. 36 p. (In Russian).

13. Mezentseva L.V. Teoreticheskie osnovi narushenii serdechnogo ritma pri ekstremalnikh vneshnich vozdeistviiach. [Theoretical foundations of cardiac arrhythmias with extreme external influences]. Thesis for the degree of Doctor of Biological Sciences. 03.03.01 - physiology, 03.01.02 - biophysics. Moscow, 2014. 229 p. (In Russian).

14. Mezentseva L.V. Analysis of the stability of various modes of cardiodynamics by computer simulation. Biophizika - Biophysics. 2014. Vol. 59. No. 1, pp. 151–155. (In Russian).

15. Mezentseva L.V. Parameters of atrioventricular conduction and stability of various modes of cardiodynamics. Biophizika - Biophysics. 2014. Vol. 59. No. 1, pp. 156–161. (In Russian).

16. Mezentseva L.V., Pertsov S.S. The stability of physiological functions and methods of its evaluation. Vestnik novikh meditsinskich technologii - Bulletin of new medical technologies. 2014. Vol. 21. No. 1. pp. 12–17. (In Russian).

17. Mezentseva L.V. Computer simulation of the parametric stability of cardiodynamics in atrial fibrillation. Biophizika - Biophysics. 2014. Vol. 59. No. 6. pp. 1180–1185. (In Russian).

18. Chernyaev A.P., Chernyaeva S.A. Degeneracy of cnoidal waves in unbounded solutions of the Korteveg – de Vries equation. Zhurnal Radioelektroniki – Journal of Radio Electronics. 2018. No. 6. Available at http://jre.cplire.ru/jre/jun18/5/text.pdf   DOI 10.30898/1684-1719.2018.6.5 (In Russian).

19. Bhatnagar P. Nonlinear waves in dimensional dispersing systems. Oxford monograph, Clarendon Press Oxford, 1979

20. Chernyaev A.P., Chernyaeva S.A. Formulation and numerical analysis of some problems for a cnoidal wave and soliton, as solutions of the Korteweg – De Vries equation. IT – technologii: razvitie i prilogeniia: XV Ezhegodnaia Megdunarodnaia nauchnotechnicheskaia konferentsiia. [IT technologies: development and applications: XV Annual International Scientific and Technical Conference]: Reports collection.  Vladikavkaz, North-Caucasian Mining and Metallurgical Institute (State Technological University), 2018.  340 p. (In Russian).

21. Bogolepov V.V., Lipatov I.I. Asimptoticheskii analiz razvitiia vikhreii Gertlera v pogranichnom sloe dgidkosti okolo vognutoi poverkhnosti. [Asymptotic analysis of the development of Gertler vortices in the boundary layer of a liquid near a concave surface]. Preprint TsAGI, 1990. No. 8. 54 p.

 

For citation:

A.P.Chernyaev. Hypothesis principles for the conditions of the rhythmic cardiac chamber activity within the framework of certain mathematical models. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No.6. Available at http://jre.cplire.ru/jre/jun19/11/text.pdf
DOI 10.30898/1684-1719.2019.6.11