"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 6, 2019

contents of issue      DOI  10.30898/1684-1719.2019.6.8     full text in Russian (pdf)  

UDC 537.877+532.5.013

The effect of long wind waves on reflection electromagnetic radiation from the sea surface

 

A. S. Zapevalov

Marine Hydrophysical Institute of RAS,  Kapitanskaya St., 2, Sevastopol 299011, Russia

 

The paper is received on May 28, 2019

 

Abstract. The variability of sea surface slopes which determine the level of the specular reflected signal at small sensing angles is analyzed. The effects created by waves whose length exceeds 10 m are considered. The analysis is carried out by numerical simulation using a spectral model of fully developed wind waves (model Pierson-Moskowitz), as well as models of developing wind waves (model Donelan). In the Donelan’s model, the stage of development of the field of wind waves is described by a parameter called the inverse age of the waves, equal to the ratio of the wind speed and the phase speed of the dominant waves. For the case when the wind waves are fully developed, the dependence on the wind speed of the variance of long wave slopes is constructed. The proportion of the variance of the slopes created by the waves with a length of more than 10 m, of the total variance created by all the waves that are present on the sea surface is determined. Depending on the wind speed, this proportion is from 5 % to 15 %. For the case when the wind wave is developing, it is shown that when the reverse age of the waves changes from 0.83 to 4, the dispersion of the slopes can change 2.5-3 times.

Key words: sea waves, radio waves, sea surface slopes, wind, statistical moments of the second order.

References

1. Moore R. K., Pierson W.J. Measuring sea state and estimating surface winds from a polar orbiting satellite.  Proc. Inter. Symp. Electromagnetic Sensing of the Earth from Satellites Miami Beach, FL. 1966. Nov. 22-24. P. R1-R28.

2. Glazman R.E., Greysukh A. Satellite altimeter measurements of surface wind.  J. Geoph. Res. 1993. Vol. 98, No. Ñ2. P. 2475-2483.

3. Zapevalov A.S., Pokazeyev K.V., Pustovoytenko V.V. On the limiting accuracy of altimetric determination of the speed of the driving wind.   Issledovanie Zemli iz kosmosa [Investigation of Earth from Space]. 2006. No 3. P. 49-54. (In Russian)

4. Karaev V.Yu., Kanevsky MB, Meshkov Ye.M. Simplified description of sea waves for the tasks of radar remote sensing.   Issledovanie Zemli iz kosmosa [Investigation of Earth from Space]. 2011. No. 2. P. 26-39. (In Russian)

5. Monin A.S., Krasitskiy V.P. Yavleniya na poverkhnosti okeana [Phenomena on the surface of the ocean]. Leningrad,  Gidrometeoizdat Publ., 1985. 375 p. (In Russian)

6. Danilychev M.V. Using models of developed waves in radio-physical calculations. Sovremennyye problemy distantsionnogo zondirovaniya, radiolokatsii, rasprostraneniya i difraktsii voln [Current problems of remote sensing, radar, wave propagation and diffraction]. Proceedings of II All-Russian conference on the problóms of radio physics and remote sensing of medium. Murom Institut of  A.G. and N.G. Stoletov Vladimir State University, 2018. P. 451-462. (In Russian)

7. Cheng Y., Xu Q., Liu Y., Lin H., Xiu P., Yin X., Zong H., Rong Z. An analytical algorithm with a wave age factor for altimeter wind speed retrieval.  International Journal of Remote Sensing. 2008.  Vol. 29, No. 19. P. 5699–5716.

8. Melville W.K., Felizardo F.C., Matusov P. Wave slope and wave age effects in measurements of electromagnetic bias.  J. Geophys. Res. 2004. Vol. 109. C07018. doi:10.1029/2002JC001708.

9. Pierson W.I., Moskovitz L. A prosed spectral form for fully developed wind seas based on the similarity method of S.A. Kitaigorodskii.  J. Geophys. Res. 1964. Vol. 69, No. 24. Ð. 5181-5190.

10. Hasselmann K., Barnett T.P., Bouws E., Carlson H., Cartwright H., Cartwright, D.E., Enke K., Ewing J.A., Gienapp H., Hasselmann D.E., Kruseman P., Meerburg A., Müller P., Olbers D.J., Richter K., Sell W., Walden H. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP).  Dtsch. Hydrogr. Z. Suppl. 1973. Vol. A8, No. 12. P. 8-95.

11. Donelan M.A., Hamilton J., Hui W.H. Directional spectra of wind-generated waves.  Philos. Trans. Roy. Soc. 1985. A315. P. 509-562.

12. Apel J.R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter.  J. Geophys. Res. 1994. Vol.99,  No. C8. P. 16269-16291.

13. Jähne B., Riemer K.S.  Two-dimensional wave number spectra of small-scale water surface waves. J . Geophys. Res. 1990. Vol. 95. P. 11531-11546.

14. Barrick D.T. Rough surface scattering based on the specular point theory.  IEEE Trans Antennas and Prop. 1968. Vol. 13. P. 303-310.

15. Wu S.T., Fung A.K. A noncoherent model for microwave emissions and backscattering from sea surface.  J. Geophys. Res. 1972. Vol. 77, No. 30. P. 5917-5929.

16. Karaev V.Yu., Panfilova M.A., Balandina G.N., Chu X. Restoring dispersion slopes of large waves from radar measurements in the microwave range.   Issledovanie Zemli iz kosmosa. 2012. ¹ 4. Ñ. 62-77.

17. Stewart P.H. Introduction to physical oceanography. Department of Oceanography, Texas A&M University. 2008. 353 p.

18. Yefimov V.V. Dinamika volnovykh protsessov v pogranichnykh sloyakh atmosfery i okeana [Dynamics of wave processes in the boundary layers of the atmosphere and ocean].  Kiyev, Naukova Dumka Publ.,  1981. 255 p. (In Russian)

19. Cox C., Munk W. Measurements of the roughness of the sea surface from photographs of the sun glitter.   J. Optical. Soc. America. 1954. Vol. 44, No. 11. P. 838–850.

20. Wilheit T.T. A Model for the Microwave Emissivity of the Ocean's Surface as a Function of Wind Speed.  IEEE Trans. Geosci. Electron. 1979. Vol. GE-17, No.4.

21. Danilychev M.V., Nikolaev A.N., Kutuza B.G. Application of the kirchhoff method for practical calculations in microwave radiometry of wavy sea surface. Journal of Communications Technology and Electronics, 2009, Vol. 54, No. 8, P. 869–878.

22. Liu Y., Yan X.-H. The wind-induced wave growth rate and the spectrum of the gravity–capillary waves.   J. Phys. Oceanogr. 1995. Vol. 25. P. 3196-3218.

 

For citation:

A. S. Zapevalov. The effect of long wind waves on reflection electromagnetic radiation from the sea surface.  Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 6. Available at http://jre.cplire.ru/jre/jun19/8/text.pdf

DOI  10.30898/1684-1719.2019.6.8