Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №6
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.6.2
EFFECT OF INCREASING THE PIEZOMODULES OF THE INITIALLY COMPRESSED FLEXIBLE BIMORPH
A.A. Pan’kov
Perm National Research Polytechnic University
614990, Perm, Komsomolsky ave., 29
The paper was received March 20, 2023.
Abstract. Object of study is flexible piezoelectric bimorphs of rod and membrane types, consisting of two or more homogeneous piezoelectric layers (films) of equal thickness with the same or opposite-directional polarization, interlayer and external electrodes (are electrode coatings). The solution of the actual problem is considered - increasing the operating characteristics of flexible piezoelectric bimorfs for their more efficient use as generators of electric energy, sensors and actuators - converters of control electric signals into movement of working surfaces for manipulation or assembly of microscale objects. The regularities of the influence of the value of the initial longitudinal load applied to the ends of the bimorphic rod or uniformly distributed along the outer circular contour (perimeter) of the bimorphic round membrane on the resulting performance values for flexible piezoelectric bimorphs of the rod and membrane types were investigated, respectively. It is believed that the value of the longitudinal force applied to the movable end of the rod bimorph or to the outer perimeter of the membrane does not change over time and does not exceed the corresponding value of the strength of loss of stability taking into account the cantilever or hinged fastening of the bimorph. Therefore, we have variable multidirectional bending directions of the bimorph (actuator) when an alternating control electric voltage is applied to the electrodes, i.e., when the sign of the control electric voltage is changed, the bending direction (blocking force) also changes to the opposite and after the control electric voltage is "turned off," the bimorph returns from the curved to the original straight state. Analytical solutions for deformation fields were obtained: deflections and rotation angles of working cross sections of flexible piezoelectric bimorfs using the known "hypothesis of flat sections" and the method of Mor’s integrals in Mechanics of Materials. The effect of increasing the resulting deflections and blocking forces of flexible piezoelectric bimorfs due to the action of the initial compressive load was identified and studied. The results of numerical modeling were obtained for flexible rod bimorph from the layers of CTS piezoceramics, the effective deformation characteristics of which were determined from solving the reverse problem based on the results of the works of other authors. Cases of cantilever and hinged fastening of ends of rod bimorph are considered. It is found that value of blocking force for bimorf in the form of hinged rod significantly exceeds that for bimorf in the form of cantilever, action of longitudinal compressive force linearly increases value of deflection and blocking force of the bimorph.
Key words: piezoeffect, flexible bimorph, controlled bending, rod, membrane, initial compression, numerical modeling.
Financing: The results were obtained within the framework of the State task of the Ministry of Science and Higher Education of the Russian Federation (project no FSNM-2023-0006).
Corresponding author: Pan’kov Andrey A., a_a_pankov@mail.ru
References
1. Tzou H.S. Piezoelectric shells (Distributed sensing and control of continua). Kluwer Academic Publishers. 1993. 320 p.
2. Rubio W.M., Vatanabe S.L., Paulino G.H., Silva E.C.N. Functionally graded piezoelectric material systems - a multiphysics perspective. In book Advanced computational materials modeling: from classical to multi-scale techniques. Edited by Miguel Vaz J´unior, Eduardo A. de Souza Neto, Pablo A. Munoz-Rojas. Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA. 2011. 414 p. P.301-339. http://dx.doi.org/10.1002/9783527632312
3. Ebrahimi F. Piezoelectric materials and devices- practice and applications. 2013. 176 p. http://dx.doi.org/10.5772/45936
4. Uorden K. Novye intellektual'nye materialy i konstrukcii. Svojstva i primenenie. [New intelligent materials and structures. Properties and Application]. Moscow, Tekhnosfera Publ. 2006. 224 p. (in Russian)
5. Berlinkur D., Kerran D., ZHaffe G. P'ezoelektricheskie i p'ezomagnitnye materialy i ih primenenie v preobrazovatelyah. Fizicheskaya akustika. T.1: Metody i pribory ul'trazvukovyh issledovanij. CHast' A [Piezoelectric and piezomagnetic materials and their application in transducers. Physical acoustics. V.1: Ultrasound Methods and Instruments]. Moscow, Mir Publ. 1966. P.204-326. (in Russian)
6. Kolpakov A.G. Effect of influation of initial stresses on the homogenized characteristics of composite. Mechanics of materials. 2005. V.37. №8. P.840-854. https://doi.org/10.1016/j.mechmat.2004.08.002
7. Karalyunas R.I. Effective thermal and electrical properties of laminated composites. Mekhanika kompozitnyh materialov [Mechanics of composite materials]. 1990. №5. P.823-830. (in Russian)
8. Getman I.P. About magnetoelectric effect in piezocomposites. DAN SSSR [USSR DAN]. 1991. V.317. №2. P.1246-1259. (in Russian)
9. Kogan L.Z., Mol'kov V.A. Magnetoelectric properties of fibrous piezocomposites. Izv. RAN. Mekhanika tverdogo tela [Izvestia RAS. Solid state mechanics]. 1996. №5. P.62-68. (in Russian)
10. Gorbachev V.I. Integral formulas in electromagnetic elasticity of heterogeneous bodies. application in the mechanics of composite materials. Composites: Mechanics, Computations, Applications. An International J.. 2017. V.8. №2. P.147-170. https://doi.org/10.1615/CompMechComputApplIntJ.v8.i2.40
11. Washizu К. Variational methods in elasticity and plasticity. Oxford, Pergamon Press. 1982. 630 p.
12. Guz' A.N. On the definition of the given elastic permanent composite laminates with initial stresses. Doklady AN USSR. Ser. A. [Reports of the USSR Academy of Sciences. Ser. A]. 1975. №3. P.216-219. (in Russian)
13. Guz' A.N. Uprugie volny v telah s nachal'nymi napryazheniyami [Elastic waves in bodies with initial stresses.]. V 2-h t. T.2. Zakonomernosti rasprostraneniya [Patterns of spread]. Kiev, Naukova dumka Publ. 1986. 536 p. (in Russian)
14. Alekhin V.V., Annin B.D., Kolpakov A.G. Sintez sloistyh materialov i konstrukcij [Synthesis of layered materials and structures]. Novosibirsk, In-t gidrodinamiki SO AN SSSR Publ. 1988. 128 p. (in Russian)
15. Akbarov S.D., Guliev M.S. Axisymmetric longitudinal wave propagation in a finite prestretched compound circular cylinder made of incompressible materials. International Applied Mechanics. 2009. V.45. №10. P.1141-1151. https://doi.org/10.1007/s10778-010-0255-y
16. Akbarov S.D. Recent investigations on dynamic problems for an elastic body with initial (residual) stresses. International Applied Mechanics. 2007. V.43. №12. P.1305-1324. https://doi.org/10.1007/s10778-008-0003-8
17. Guliev M.S., Sejfulaev A.I., Abdullaeva D.N. Study of the propagation of elastic waves in a composite cylinder with initial torsion. Stroitel'naya mekhanika inzhenernyh konstrukcij i sooruzhenij [Construction mechanics of engineering structures and structures]. 2018. №5. P.404-413. https://doi.org/10.22363/1815-5235-2018-14-5-404-413 (in Russian)
18. Belyankova T.I., Kalinchuk V.V. Properties of prestressed isotropic materials when considering elastic modules of higher orders. Nauka YUga Rossii [Science of the South of Russia]. 2017. №2. P.3-12 https://doi.org/10.23885/2500-0640-2017-13-2-3-12 (in Russian)
19. Nedin R.D., Dudarev V.V., Vatulyan A.O. Vibrations of inhomogeneous piezoelectric bodies in conditions of residual stress-strain state. Applied Mathematical Modelling. 2018. V.63. P.219-242. https://doi.org/10.1016/j.apm.2018.06.038
20. Vatulyan A.O., Dudarev V.V., Mnukhin R.M. Determination of the inhomogeneous preliminary stress-strain state in a piezoelectric disk. Journal of Applied Mechanics and Technical Physics. 2018. V.59. №3. P.542-550. https://doi.org/10.1134/S0021894418030197
21. Dasdemir A. Forced vibrations of pre-stressed sandwich plate-strip with elastic layers and piezoelectric core. International Applied Mechanics. 2018. V.54. №4. P.480-493. https://doi.org/10.1007/s10778-018-0901-3
22. Guo X., Wei P. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with initial stresses. Ultrasonics. 2016. V.66. P.72-85. https://doi.org/10.1016/j.ultras.2015.11.008
23. Han J.M., Adriaens T.A., Koning W.L., Banning R. Modelling piezoelectric actuators. IEEE/ASME Transactions on Mechatronics. 2000. V.5. №4. P.331-341. https://doi.org/10.1109/3516.891044
24. Ivan I.A., Rakotondrabe M., Lutz P., Chaillet N. Quasistatic displacement self-sensing method for cantilevered piezoelectric actuators. Review of Scientific Instruments. American Institute of Physics. 2009. V.80. №6. P.065102-1/065102-8. https://doi.org/ 10.1063/1.3142486
25. Sofronov A., Nikiforov V., Klimashin V. Bimorphic piezoelectric elements: actuators and sensors. Komponenty i tekhnologii [Components and technologies]. 2003. V.30. №4. P.46-48. (in Russian)
26. Zhu D., Almusallam A., Beeby S.P., Tudor J., Harris N.R. A bimorph multi-layer piezoelectric vibration energy harvester. PowerMEMS 2010 Proceedings. 2010. Belgium, Leuven. P.1-4.
27. Bansevičius R., Navickaitė S., Jūrėnas V., Mažeika D., Lučinskis R., Navickas J. Investigation of novel design piezoelectric bending actuators. Journal of Vibroengineering. 2013. V.15. №2. P.1064-1068.
28. Vatul'yan A.O., Getman I.P., Lapickaya N.B. About bending of piezoelectric bimorph plate. Prikladnaya mekhanika [Applied mechanics]. 1991. V.27. №10. P.101-105. (in Russian)
29. Vatul'yan A.O., Rynkova A.A. About one model of bending oscillations of piezoelectric bimorfs with split electrodes and its applications. Izvestiya RAN MTT [Izvestia RAS MTT]. 2007. №4. P.114-122. https://doi.org/10.3103/S0025654407040127 (in Russian)
30. Patent RF №2099754. Jelstaun Korporejshn N.V. Deformable mirror based on multilayer active bimorph structure. Application Date: 17.10.1996. Publication Date: 20.12.1997. 7 p. URL: https://www.fips.ru/registers-doc-view/fips_servlet (in Russian)
31. Antonyak YU.T., Vassergiser M.E. Calculation of membrane type bending piezoelectric transducer characteristics. Akusticheskij zhurnal [Acoustic magazine]. 1982. V.28. №3. P.294-302. (in Russian)
32. Aronov B.S. Elektromekhanicheskie preobrazovateli iz p'ezoelektricheskoj keramiki [Electromechanical converters made of piezoelectric ceramics.]. Leningrad, Energoatomizdat Publ. 1990. 270 p. (in Russian)
33. Williams C.B., Yates R.B. Analysis of a microelectric generator for Microsystems. Sensors and Actuators A: Physical. 1996. V.52. №1-3. P.8-11.
34. Abbakumov K.E., Konovalov R.S., Caplev V.M. Experimental study of a disk bimorph piezoelectric generator. Izvestiya SPbGETU «LETI» [Izvestia SPbGETU "LETI."]. 2014. №9. P.59-63. (in Russian)
35. Liu H., Zhong J., Lee C., Lee S.-W., Lin L. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews. 2018. V.5. №4. P.041306. https://doi.org/10.1063/1.5074184
36. Vasil'ev V. A., Verem'yov V.A., Tihonov A.I. Influence of frequency factors and parameters on informative signal of piezoelectric pressure sensors. Datchiki i sistemy [Sensors and systems]. 2003. №8. P.5-9. (in Russian)
37. SHarapov V.M., Musienko M.P., SHarapova E.V. P'ezoelektricheskie datchiki. [Piezoelectric sensors]. Moscow, Tekhnosfera Publ. 2006. 632 p. (in Russian)
38. Mouhli M. Analysis and shape modeling of thin piezoelectric actuators. Virginia Commonwealth University Publ. 2005. 100 p. https://scholarscompass.vcu.edu/etd/1552
39. Panich A.E. P'ezokeramicheskie aktyuatory [Piezoceramic actors]. Rostov na Donu, RGU Publ. 2008. 159 p. (in Russian)
40. Yamada H., Sasaki M., Nam Y. Active vibration control of a micro-actuator for hard disk drives using self-sensing actuator. Journal of Intelligent Material Systems and Structures. 2008. V.19. №1. P.113-123. https://doi.org/10.1177/1045389X07083693
41. El-Sayed A.M., Abo-Ismail A., El-Melegy M.T., Hamzaid N.A., Osman N.A.A. Development of a micro-gripper using piezoelectric bimorphs. Sensors. 2013. V.13. P.5826-5840. https://doi.org/10.3390/s130505826
42. Bardin V. A., Vasil'ev V. A., CHernov P. S. State of the art and development of nano- and micro-displacement actors. Trudy mezhdunarodnogo simpoziuma "Nadezh-nost' i kachestvo" [Proceedings of the international symposium "Reliability and Quality"]. 2014. V.2. P.123-127. (in Russian)
43. Bardin V.A., Vasil'ev V.A. Actors of nano- and micro-movements for control, control and safety systems. Sovremennaya tekhnika i tekhnologii [Modern technology and technology]. 2014. №2. P.1-5. [Elektronnyj resurs]. URL: https://technology.snauka.ru/2014/02/3057 (in Russian)
44. Zhou J., Dong L., Yang W. A double-acting piezoelectric actuator for helicopter active rotor. Actuators. 2021. V.10. №10(247). P.1-15. https://doi.org/10.3390/act10100247
45. Abedian B., Cundari M. Resonant frequency of a polyvinylidene flouride piezoelectric bimorph: the effect of surrounding fluid. Proceedings Smart Structures and Materials 1993. V.1916: Smart Materials. 23 July 1993. https://doi.org/10.1117/12.148486
46. Patent RU №2723567. Pan'kov A.A., Anoshkin A.N., Pisarev P.V. Lopast' vozdushnogo vinta s upravlyaemoj geometriej pro-filya [Propeller blade with controlled profile geometry]. Application Date: 18.11.2019. Publication Date: 16.06.2020. 5 p. URL: https://www.fips.ru/registers-doc-view/fips_servlet (in Russian)
47. Patent RU №2636255. Pan'kov A.A. P'ezoaktyuator izgibnogo tipa [Bending type piezoactuator]. Application Date: 14.04.2016. Publication Date: 21.11.2017. 8 p. URL: https://www.fips.ru/registers-doc-view/fips_servlet (in Russian)
48. Patent RU №2778161. Pan'kov A.A. Sposob uvelicheniya p'ezochuvstvitel'nosti bimorfa izgib-nogo tipa [Method for increasing piezosensitivity of bimorph of bending type]. Application Date: 27.01.2022. Publication Date: 15.08.2022. 7 p. URL: https://www.fips.ru/registers-doc-view/fips_servlet (in Russian)
49. Patent US №5632841. Hellbaum R.F., Bryant R.G., Fox R.L. Thin layer composite unimorph ferroelectric driver and sensor. Application Date: 24.01.1997. Publication Date: 27.05.1997. 12 p. URL: https://patents.google.com/patent/US20010043027/fi
For citation:
Pan’kov A.A. Effect of increasing the piezomodules of the initially compressed flexible bimorph. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. №6. https://doi.org/10.30898/1684-1719.2023.6.2 (In Russian)