Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №6
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.6.4
THE ELECTROELASTIC PROPERTIES OF THE INITIAL-STRESSED PIEZOCERAMICS PZT-4 WITH UNIDIRECTIONAL TUNNEL PORES
A.A. Pan’kov
Perm National Research Polytechnic University,
614990, Perm, Komsomolsky ave.,29
The paper was received March 27, 2023
Abstract. Prediction results and numerical analysis of effect on effective transversal-isotropic electroelastic properties of porous piezoceramics of PZT-4 with unidirectional cylindrical (tunnel) pores of values of its initial axisymmetric stress state are presented. Effective constants have been identified: Young's and shear modules, Poisson's ratio in the transversal plane of isotropy and the "longitudinally/transverse" piezomodule of porous ceramics, which are most significantly influenced by the nature and values of its initial deformation in comparison with other practically "invariant" constants. It has been found that the "transversal" hydrostatic initial deformation of the porous ceramic has a greater effect on the effective constants of the porous ceramic than the same values of the "longitudinal" axial initial deformation.
Key words: piezoelectric effect, porous piezoceramics, electroelastic properties, initial stress state, mechanics of composites, boundary value problem of electroelasticity, numerical modeling.
Financing: The results were obtained within the framework of the State task of the Ministry of Science and Higher Education of the Russian Federation (project no FSNM-2023-0006).
Corresponding author: Pan’kov Andrey A., a_a_pankov@mail.ru
References
1. Tzou H.S. Piezoelectric Shells (Distributed sensing and control of continua). Kluwer Academic Publishers. 1993. 320 p.
2. Rubio W.M., Vatanabe S.L., Paulino G.H., Silva E.C.N. Functionally graded piezoelectric material systems - a multiphysics perspective. In book Advanced computational materials modeling: from classical to multi-scale techniques. Edited by Miguel Vaz J´unior, Eduardo A. de Souza Neto, Pablo A. Munoz-Rojas. Weinheim, WILEY-VCH Verlag GmbH & Co. KGaA. 2011. 414 p. P.301-339. http://dx.doi.org/10.1002/9783527632312
3. Ebrahimi F. Piezoelectric materials and devices-practice and applications. 2013. 176 p. http://dx.doi.org/10.5772/45936
4. Uorden K. Novye intellektual'nye materialy i konstrukcii. Svojstva i primenenie. [New intelligent materials and structures. Properties and Application]. Moscow, Tekhnosfera Publ. 2006. 224 p. (in Russian)
5. Berlinkur D., Kerran D., ZHaffe G. P'ezoelektricheskie i p'ezomagnitnye materialy i ih primenenie v preobrazovatelyah. Fizicheskaya akustika. T.1. Metody i pribory ul'trazvukovyh issledovanij. CHast' A [Piezoelectric and piezomagnetic materials and their application in transducers. Physical acoustics. V.1. Ultrasound Methods and Instruments]. Moscow, Mir Publ. 1966. P.204-326. (in Russian)
6. Kolpakov A.G. Effect of influation of initial stresses on the homogenized characteristics of composite. Mechanics of materials. 2005. V.37. №8. P.840-854. https://doi.org/10.1016/j.mechmat.2004.08.002
7. Karalyunas R.I. Effective thermal and electrical properties of laminated composites. Mekhanika kompozitnyh materialov [Mechanics of composite materials]. 1990. №5. P.823-830. (in Russian)
8. Getman I.P. About magnetoelectric effect in piezocomposites. DAN SSSR [USSR DAN]. 1991. V.317. №2. P.1246-1259. (in Russian)
9. Kogan L.Z., Mol'kov V.A. Magnetoelectric properties of fibrous piezocomposites. Izv. RAN. Mekhanika tverdogo tela [Izvestia RAS. Solid state mechanics]. 1996. №5. P.62-68. (in Russian)
10. Gorbachev V.I. Integral formulas in electromagnetic elasticity of heterogeneous bodies. application in the mechanics of composite materials. Composites: Mechanics, Computations, Applications. An International J.. 2017. V.8. №2. P.147-170. https://doi.org/10.1615/CompMechComputApplIntJ.v8.i2.40
11. Washizu К. Variational methods in elasticity and plasticity. Oxford: Pergamon Press. 1982. 630 p.
12. Guz' A.N. On the definition of the given elastic permanent composite laminates with initial stresses. Doklady AN USSR. Ser. A. [Reports of the USSR Academy of Sciences. Ser. A]. 1975. №3. P.216-219. (in Russian)
13. Guz' A.N. Uprugie volny v telah s nachal'nymi napryazheniyami [Elastic waves in bodies with initial stresses.]. V 2-h t. T.2. Zakonomernosti rasprostraneniya [Patterns of spread]. Kiev, Naukova dumka Publ. 1986. 536 p. (in Russian)
14. Alekhin V.V., Annin B.D., Kolpakov A.G. Sintez sloistyh materialov i konstrukcij [Synthesis of layered materials and structures]. Novosibirsk, In-t gidrodinamiki SO AN SSSR Publ. 1988. 128 p. (in Russian)
15. Akbarov S.D., Guliev M.S. Axisymmetric longitudinal wave propagation in a finite prestretched compound circular cylinder made of incompressible materials. International Applied Mechanics. 2009. V.45. №10. P.1141-1151. https://doi.org/10.1007/s10778-010-0255-y
16. Akbarov S.D. Recent investigations on dynamic problems for an elastic body with initial (residual) stresses. International Applied Mechanics. 2007. V.43. №12. P.1305-1324. https://doi.org/10.1007/s10778-008-0003-8
17. Guliev M.S., Sejfulaev A.I., Abdullaeva D.N. Study of the propagation of elastic waves in a composite cylinder with initial torsion. Stroitel'naya mekhanika inzhenernyh konstrukcij i sooruzhenij [Construction mechanics of engineering structures and structures]. 2018. №5. P.404-413. https://doi.org/10.22363/1815-5235-2018-14-5-404-413 (in Russian)
18. Belyankova T.I., Kalinchuk V.V. Properties of prestressed isotropic materials when considering elastic modules of higher orders. Nauka YUga Rossii [Science of the South of Russia]. 2017. №2. P.3-12. https://doi.org/10.23885/2500-0640-2017-13-2-3-12 (in Russian)
19. Nedin R.D., Dudarev V.V., Vatulyan A.O. Vibrations of inhomogeneous piezoelectric bodies in conditions of residual stress-strain state. Applied Mathematical Modelling. 2018. V.63. P.219-242. https://doi.org/10.1016/j.apm.2018.06.038
20. Vatulyan A.O., Dudarev V.V., Mnukhin R.M. Determination of the Inhomogeneous Preliminary Stress-Strain State in a Piezoelectric Disk. Journal of Applied Mechanics and Technical Physics. 2018. V.59. №3. P.542-550. https://doi.org/10.1134/S0021894418030197
21. Dasdemir A. Forced vibrations of pre-stressed sandwich plate-strip with elastic layers and piezoelectric core. International Applied Mechanics. 2018. V.54. №4. P.480-493. https://doi.org/10.1007/s10778-018-0901-3
22. Guo X., Wei P. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with initial stresses. Ultrasonics. 2016. V.66. P.72-85. https://doi.org/10.1016/j.ultras.2015.11.008
23. Pan’kov A.A. Effect of initial stress state on effective properties of piezocomposite. Mechanics of Composite Materials. 2022. V.58. №5. P.733-746. https://doi.org/10.1007/s11029-022-10063-w
24. Pan’kov A.A. Electromagnetic coupling coefficients of the composite with piezoactive phases. Fizicheskaya mezomekhanika [Physical mesomechanics]. 2011. V.14. №2. P.93-99. (in Russian)
25. Shermergor T.D. Teoriya uprugosti mikroneodnorodnyh sred [Theory of elasticity of micro heterogeneous media]. Moscow, Nauka Publ. 1976. 399 p. (in Russian)
For citation:
Pan’kov A.A. The electroelastic properties of the initial-stressed piezoceramics PZT-4 with unidirectional tunnel pores. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. №6. https://doi.org/10.30898/1684-1719.2023.6.4 (In Russian