Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №6
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.6.9
MIRROR ANTENNA MODELLING CHARACTERISTICS REGARDING THE INFLUENCE OF METEOROLOGICAL FACTORS
M.YU. Zvezdina1,2, A.M. Shaposhnikova2, YU.A. Shokova1, D.S. Fedorov2
1 Don State Technical University
344000, Russia, Rostov-on-Don, Gagarin sq., 1
2 FSUE Rostov-on-Don Research Institute of Radio Communication
344038, Russia, Rostov-on-Don, Nansen Ave., 130
The paper was received March 28, 2023
Abstract. An electrodynamic model of a millimeter-range single-mirror antenna with a puddle in the reflector is given. As a justification for the need for a model, the influence of rainfall on the design of millimeter-range mirror antennas was assessed. The aim of the study was to create a model of the parabolic reflector of a mirror antenna with an aqueous precipitation layer, with parameters chosen for the climatic region in which the antenna is located. An analysis of known models of single mirror antennas with a layer of precipitation has been carried out. It has been shown that the known models do not describe the operation of a millimeter-range mirror antenna with a reflector in which a puddle of water has formed. It is suggested that the influence of this layer on the directional characteristics of the antenna be assessed with the aperture method used for mirror antennas with reflector profile defects. The results of the modelling of the directivity pattern of a mirror antenna with a puddle of water in the reflector are presented. It is shown that the appearance of a puddle leads to an asymmetric change in the height of the first side lobes of the directivity pattern in the vertical plane. In the horizontal plane, changes are observed in the growth level of each side lobe, except for the first one. The lobes' symmetry is not affected. Research focus: The process of emitting a millimeter electromagnetic wave using a single mirror antenna with a layer of water in the reflector. Subject of the study: "Mirror antenna reflector with water precipitation layer - millimeter wavelength electromagnetic wave" system. Methods: Electromagnetic meteorological method, modified aperture method, modified Ruze method, statistical meteorological method. Main result: A wireless communication system using the magnetic component of the electromagnetic field has been developed. Practical relevance: The results of this research may be useful in the design of millimeter-range mirror antennas to assess the influence of meteorological precipitation on the directivity characteristics. The work was presented at the VIII All-Russian Microwave Conference "Microwave week 2022" in Moscow.
Keywords: mirror antenna, electrodynamic model, meteorological factors, rain layer in reflector, directivity.
Corresponding author: Shaposhnikova Anna Maratovna, anywolverine@rambler.ru
References
1. Skolnik M.I. Radar Handbook. 3nd ed. 2008. New York: McGraw-Hill. 1352 p.
2. Kurri M., Huuskonen A. Measurement of the transmission loss of a radome at different rain intensities. Journal of atmospheric and oceanic technology. 2008. V.25. P.1590-1599. https://dx.doi.org/10.1175/2008JTECHA1056.1.
3. Ain M.F., Hassan S.I.s., Marzuki A., Ab Rahman I.I., Norhassim K.A., Arifen N.A.M., Zahar Z. Measurement of wet offset parabolic antenna at Ka-band with different elevation angles. ELEKTROPIKA: International Journal of Electrical, Electronic Engineering and Technology. 2012. V.2. P.47-56.
4. Mom J., Tyokighir S., Igwue G. Evaluation of some raindrop size distribution models for different rain rates. International Journal of Engineering Research & Technology. 2021. V.10. Paper ID: IJERTV10IS090075. https://doi.org/10.17577/IJERTV10IS090075
5. Sukharevsky O.I., Nechitaylo S.V., Khlopov G.I., Voitovych O.A. Influence of the Snow Cover on Radiation Characteristics of Reflector Antennas. Journal of Communications Technology and Electronics. 2015. V.60. №6. P. 633-641. http://doi.org/10.1134/S1064226915060157
6. Zvezdina M.Yu., Shokova Yu.A., Shaposhnikova A.M. Chrekesova L.V. Climate Factors Impact on Millimetre Antenna Losses. Proceeding of International Scientific Conference “Radiation and Scattering of Electromagnetic Waves – RSEMW 2021”. Gelendzhik District, Divnomorskoe.2021. P. 349-352. https://doi.org/10.1109/RSEMW52378.2021.9494012
7. Zvezdina M.Yu., Shaposhnikova A.M., Shokova Yu.A. Effect of climatic factors on energy loss of millimeter range electromagnetic wave in passing through a precipitation layer on the mirror antenna reflector. Radio engineering. 2021. №7. P.98-107. https://doi.org/10.18127/j00338486-202107-14 (In Russian)
8. Yakimov A.N. Proektirovanie mikrovolnovykh antenn s uchetom vneshnikh vozdeistvii [Design of microwave antennas with consideration of external effects]. Penza, Penza State University Publ. 2004. 206 p. (In Russian)
9. Huang J., Cao Y., Raimundo X., Cheema A., Salous S. Rain statistics investigation and rain attenuation modeling for millimeter wave short-range fixed links. IEEE Access. 2019. V.7. P.156110-156120. http://doi.org/10.1109/ACCESS.2019.2949437
10. Yusuf A.A., Falade A., Olufeagba B.J., Mohammed O.O., Rahman T.A .Statistical Evaluation of measured rain attenuation in tropical climate and comparison with prediction models. Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 2016. V.15. №2. https://doi.org/10.1590/2179-10742016v15i2624
11. Daoud N., Christodoulou C., Murrell D., Tarasenko N., Hong E., Lane S. Rain attenuation analysis at 84 GHz. Proceeding of IEEE International Symposium “On Antennas and Propagation & USNC/URSI National Radio Science Meeting”. San-Diego, California. 2017. P.1629-1630. URL: https://10.1109/APUSNCURSINRSM.2017.8072857
12. Kharadly M.M.Z., Ross R. Effect of wet antenna attenuation on propagation data statistics. IEEE Transactions on Antennas and Propagation. 2001.V.49. №8. P.1183-1191. https://doi.org/11.1109/8.943313
13. Gurtovnik I.G., Sokolov V.I., Trofimov N.N., Shalgunov G.S. Radioprozrachnye izdeliya iz stekloplastikov [Transparent Fibreglass Products]. Mosсow, Mir Publ. 2022. 368 p. (In Russian)
14. Solomatin S.V., Rozanov S.B., Kropotkina E.P., Lukin A.N. Techniques of ground-based remote sensing of the ozone layer by millimeter-wave heterodyne spectroscopy. Proceeding SPIE. 1998. V.3406. P.135-157. https://doi.org/10.1109/MCMB.1998.758918
15. Patent USA № 9680230B1. Santoru J., Chen E.C., Comeaux C.C., Wu T. Antenna reflector hydrophobic coating and method for applying same. Application Date: 29.06.2015. Publication Date: 13.06.2017. 21 p. URL: https://patents.google.com/patent/US9680230
16. Blevis B.C. Losses due to rain on radomes and antenna reflecting surfaces. IEEE Transactions on Antennas and Propagation. 1965. V.13. №1. P.175-176. https://doi.org/10.1109/TAP.1965.1138384
17. Jacobson M.D., Hogg D.C., Snider J.B. Wet reflector in millimeter-wave radiometry – Experiment and Theory. IEEE Transactions on Geoscience and Remote Sensing. 1986. V.24. №5. P.784-791. https://doi.org/10.1109/TGRS.1986.289627
18. Nikolaev P. V., Samburov N. V. Ftoroplastic-based radio-transparent shelters. Voprosy radioehlektroniki [Matters of radio electronics]. 2016. №10. P.77-84. (In Russian)
19. Golunov V.A., Kuz'min A.V., Skulachev D.I., Khokhlov G.I. Experimentally obtained spectra of the millimeter waves' attenuation, absorption and scattering from dry fresh snow. Zhurnal radioelectroniki [Journal of Radio Electronics] [online]. 2016. № 9. URL: http://jre.cplire.ru/jre/sep16/4/text.html (In Russian)
20. Recommendation ITU-R P.527-6 (09/2021). Electrical characteristics of the surface of the Earth. Geneva, ITU. 2021. 32 p.
21. Sedov L.I. Mekhanika sploshnoi sredy. T.1. [Continuum Mechanics. Vol.1]. Moscow, Nauka Publ. 1970. 492 p. (In Russian)
22. Zvezdina M.Yu., Shaposhnikova A.M., Shokova Yu.A. Mathematical model of the process of water accumulation in the reflector of a millimeter-range mirror antenna. Proceedings of XXVIII International Scientific Conference on Science and Technology "Radiolokatsiya, navigatsiya, svyaz' (RLNC*2022)" [Radiolocation, navigation, communication (RLNC*2022)]. Voronezh. 2022. V.5. P.131-144. (In Russian)
23. Notaroš B.M. Meteorological electromagnetics. IEEE Antennas and Propagation Magazine. 2021. P.14-27. https://doi.org/10.1109/MAP.2021.3054298
24. Aizenberg G.Z., Yampol'skii V.G., Tereshin O.N. Antenny UKV [VHF antennas]. V.1. Moscow, Svyaz' Publ. 1977. 384 p. (In Russian)
25. Liu Y., Huang F., Zhang Q., Yuan J., Dong T. Calculations of radiation characteristics of reflector antennas with surface deformation and perforation. Computers and Mathematics with Applications. 2011. V.61. P.2348-2352. https://dx.doi.org/10.1016/j.camwa.2010.10.007
26. Ip H.P., Rahmat-Samii Y. Analysis and characterization of multilayered reflector antennas: rain/snow accumulation and deployable membrane. IEEE Transactions on Antennas and Propagation. 1998. V.46. P.1593-1605. https://doi.org/10.1109/8.736606
27. Patent USA № 2679004A. Dyke E., Hoffman Jr. R. Y. Snow detector and heater system for microwave antennas. Application Date: 21.12.1951. Publication Date: 19.05.1954. 21 p. URL: https://patents.google.com/patent/US2679004A/en
28. Mancini A., Salazar J.L., Lebrón R.M., Boon L.C. A novel instrument for real-time measurement of attenuation of weather radar radome including its outer surface. Part II: Applications. Journal of atmospheric and oceanic technology. 2018.V.35. №5. P.975-991.
29. Nastavleniya po sluzhbe prognozov [Forecast service instructions]. Moscow, Gidrometeoizdat Publ. 1981. 56 p. (In Russian)
30. Dokhov M.P. Dispersed particle evaporation time calculation. Fundamental'nye nauki [Fundamental Sciences]. 2006. №10. P.65-66. (In Russian)
31. Zhirov V.A., Zaitsev S.G., Orlov A.E. Efficient use of spectrum in upcoming high-speed satellite communications systems. Ehlektrosvyaz' [Electrical communication systems]. 2019. №1. P.42-51. (In Russian)
32. Gang W.Z., Zhu F., Zhu L., Tao W.-Q., Yang C. Self-peeling of frozen water impacting a cold surface. Communications Physics. 2022. https://doi.org/10.1038/s42005-022-00827-0
33. He Z., Zhuo Y., Zhang Z., He J. Design of icephobic surfaces by lowering ice adhesion strength: A mini review. Coatings. 2021. №11. Article ID 1343. 26 p. https://doi.org/10.3390/coatins11111343
34. Rodie P., Kapun B., Panjan M., Milošev I. Easy and fast fabrication of self-cleaning and anti-icing perfluoroalkyl silane film on aluminium. Coatings. 2020. №10. Article ID 234. https://doi.org/10.3390/coatins110030234
35. Loganina M.I. Investigating the kinetics of freezing water droplets on superhydrophobic coatings. Vestnik MGSU [Moscow State Construction University Bulletin]. 2019. V.14. №4. P.435-441. https://doi.org/10.22227/1997-0935.2019.4.435-441 (In Russian)
36. Shilova O.A., Tsvetkova I.N., Krasil'nikova L.N., Ladilina E.YU., Lyubova T.S., Kruchinina I.YU. Superhydrophobic anti-icing hybrid coatings synthesis and study. Transportnye sistemy i tekhnologii [Transport systems and technologies]. 2015. V.1. №1. P. 91-98. (In Russian)
37. Patent USA № 7342551 B2. King L.D. Antenna systems for reliable satellite television reception in moisture conditions. Application Date: 13.10.2004. Publication Date: 11.03.2008. 21 p. URL: https://patents.google.com/patent/US7342551B2/en
38. Drabkin A.L., Zuzenko V.L., Kislov A.G. Antenno-fidernye ustroistva [Antenna feeders]. Moscow, Sovetskoye Radio Publ. 1974. 536 p. (In Russian)
39. Ruze J. The effect of apperture errors on the antenna radiation pattern. Nuovo Cimento. 1952. V.9. №3 .P.364-380. https://doi.org/10.1007/BF02903409
40. Cheng S.X., Duan B.Y., Song L.W., Zhang X.H.A. A handy formula for estimating the effects of random surface errors on average power pattern of distorted reflector antennas. IEEE Transactions on Antennas and Propagation. 2019. V.67. №1. P.649-653. https://dx.doi.org/10.1109/TAP.2018.28798298
41. Assis A.R., Moreira F.J.S., Bergmann J.R. GO synthesis of offset dual reflector antennas using local axis-displaced confocal quadrics. Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 2020. V. 19. №2. P.177-190. https://dx.doi.org/10.1590/2179-10742020v19i2813
42. Zhang S., Yang G., Zhang Y. An approximation mathematical formula of pattern analysis for distorted reflector antennas considering surface normal vector variation.International Journal of Antennas and Propagation. 2016. V.2016. Article ID 4824873. https://dx.doi.org/10.1155/2016/4824873
43. Moreira F.J.S., Bergmann J.R. Shaping axis-symmetric dual-reflector antennas by combining conic sections. IEEE Transactions on Antennas and Propagation. 2011. V.59. №3. P.1042-1046. https://doi.org/10.1109/TAP.2010.2103028
44. Lavretskii E.I., Chernyshov V.S. Study of the effect of periodic phase errors on the characteristics of an electrically scanned parabolic antenna. Zhurnal radioelectroniki [Journal of Radio Electronics] [online]. 2015. № 3. URL: http://www.jre.cplire.ru/mar15/11/text.html (In Russian)
45. Lavrent'eva A.S., Morozov O.A., Chumankin YU.E. Determination of directional pattern parameters for complex deformations of the reflector of the mirror antenna. Sistemy upravleniya i informatsionnye tekhnologii [Control Systems and Information Technology]. 2020. №3(81). P.31-35. (In Russian)
46. Sobolev B.S., Novikov S.I. Modified aperture method for mirror antenna design. Raketno-kosmicheskaya tekhnika [Rocket and space technology]. 2014. V.1. №1(4). P.10-14. (In Russian)
For citation:
Zvezdina M.YU., Shaposhnikova A.M., Shokova YU.A., Fedorov D.S. Mirror antenna modelling characteristics regarding the influence of meteorological factors. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. №6. https://doi.org/10.30898/1684-1719.2023.6.9 (In Russian)