Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹6
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.6.10
COMPARATIVE EVALUATION OF METHODS
FOR ANTENNA ARRAYS ELECTRICAL
E.O. Mozharov, I.Ya. Afanasev, V.Ju. Loskutov, E.S. Litvinov
Bauman Moscow State Technical University
105005, Russia, Moscow, 2-ya Baumanskaya str., 5, p.1
The paper was received March 12, 2025.
Abstract. This study examines and compares widely used methods for analyzing spatial electrical characteristics of phased array antennas. A 7x7 broadband low-profile antenna array with hexagonal lattice spacing serves as the primary test case. Loss functions for direct comparison of results from different computational approaches were developed to evaluate radiation pattern accuracy. The paper explores variations of approximate radiation pattern calculation methods based on the array system factor concept. Modifications to rigorous full-wave electromagnetic simulations are discussed, including techniques that model fields for individual radiators or specific radiator groups within the array. A novel computational method is proposed: electromagnetic fields are first calculated for small radiator clusters, then combined into a complete radiation pattern through spherical wave field stitching. This approach significantly reduces computational resource requirements while maintaining accuracy. The analysis highlights key advantages and limitations of each method, providing practical insights for engineers working on antenna array optimization.
Key words: antenna array, phased array antenna, antenna element, radiation pattern, computational method, loss function.
Corresponding author: Mozharov Eduard Olegovich, eduardmozharov@yandex.ru
References
1. Grinev A.YU. Numerical methods for solving applied problems of electrodynamics. – M.: Radiotechnics. – 2012. (In Russian)
2. Kurushin A.A., Bankov S.E., Gribanov A.N. Electrodynamic modeling of antenna and microwave structures using FEKO. – M.: Solon-Press. – 2017. (In Russian)
3. Aleksejchik L.V., Kurushin A.A. Comprehensive modeling in the program CST SUITE. – 2021. (In Russian)
4. Kurushin A.A., Bankov S.E. Modeling of antennas and microwave structures using HFSS. – M.: Solon-Press. – 2019. (In Russian)
5. Voskresenskij D.I. Design of phased antenna arrays. – M.: Radiotechnics. – 2003. – V. 3. (In Russian)
6. Sazonov D.M. Antennas and microwave devices. – M.: Vysshaya shkola. – 1988. (In Russian)
7. Bahrakh L.D., Voskresenskij D.I. Antenna technology problems. – M.: Radio i svyaz'. – 1989. (In Russian)
8. Balanis C.A. Advanced Engineering Electromagnetics 3rd Edition. Wiley. – 2023.
9. Amitej N., Galindo V., Vu CH. Theory and analysis of phased array antennas. – M.: Mir. – 1974. – 457 s. (In Russian)
10. Sazonov D.M. Multi-element antenna systems. The matrix approach. – M.: Radiotechnics. – 2015. (In Russian)
11. Haupt R.L. Antenna arrays: a computational approach. John Wiley & Sons. – 2010.
12. Krekhtunov V.M., Budkin A.A., Komissarova E.V Calculation of radiation patterns of waveguide-dielectric radiators, taking into account the mutual influence in the antenna array // Radiolokaciya, navigaciya, svyaz'. – 2014. – P. 680-686. (In Russian)
13. Ehminov S.I., Sochilin A.V. Numerical and analytical method for calculating phased antenna arrays // Vestnik Novgorodskogo gosudarstvennogo universiteta im. Yaroslava Mudrogo. – 2022. – ¹. 3 (128). – P. 111-113. https://doi.org/10.34680/2076-8052.2022.3(128).111-113 (In Russian)
14. Craeye C. A fast impedance and pattern computation scheme for finite antenna arrays // IEEE transactions on antennas and propagation. – 2006. – Ò. 54. – ¹. 10. – Ñ. 3030-3034. https://doi.org/10.1109/TAP.2006.882202
15. Propastin A.A., Prokhorenko V.I. Determining the DOA of jamming signals using root-music and MVDR algorithms for planar elliptical digital antenna array // 2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). – IEEE, 2023. – V. 5. – P. 1-6. https://doi.org/10.1109/REEPE57272.2023.10086894
16. Propastin A.A. Synthesis of the Radiation Pattern of a Conformal Antenna Array Under Conditions of Strong Mutual Coupling of Radiators // 2024 IEEE 9th All-Russian Microwave Conference (RMC). – IEEE, 2024. – P. 298-302. https://doi.org/10.1109/rmc62880.2024.10846902
17. Ponomarev L.I., Vasin A.A., Krekhtunov V.M.; Terekhin O.V., Komissarova E.V. Onboard phased array antenna of the millimeter wave range // Journal of Communications Technology and Electronics. – 2023. – V. 68. – ¹. 8. – P. 857-866. https://doi.org/10.1134/S1064226923080107
18. Sadykov A.R. Radiating element for low-element antenna arrays / A.R. Sadykov, YU.E. Sedel'nikov, A.V. Petrov [i dr.] // Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. – 2024. – ¹9 (147). https://doi.org/10.60797/IRJ.2024.147.120 (In Russian)
19. Rutschlin M., Wittig T., Iluz Z. Phased antenna array design with CST STUDIO SUITE // 2016 10th European Conference on Antennas and Propagation (EuCAP). – IEEE, 2016. – P. 1-5. https://doi.org/10.1109/EuCAP.2016.7481530
20. Lesur B. et al. A large antenna array for Ka-band satcom-on-the-move applications – Accurate modeling and experimental characterization // IEEE Transactions on Antennas and Propagation. – 2018. – V. 66. – ¹. 9. – P. 4586-4595. https://doi.org/10.1109/TAP.2018.2851296
21. Vilenskij A. R. i dr. Broadband printed antenna array element with an air cavity in the screen // Antenny. – 2017. – ¹. 9. – P. 241. (In Russian)
22. Lyulyukin K.V., Litun V.I., Rogozin A.A. Broadband printed phased array radiator with a cavity in a metal base // SVCH-tekhnika i telekommunikacionnye tekhnologii (KrYMIKo'2015). – 2015. – P. 457-458. (In Russian)
23. Lyulyukin K.V. i dr. Low-profile broadband antenna array emitter with reduced inter-element connections // Antenny i rasprostranenie radiovoln. – 2018. – P. 22-25. (In Russian)
24. Vilenskiy A.R., Litun V.I., Lyulyukin K.V. Wideband beam steering antenna array of printed cavity-backed elements with integrated EBG structure // IEEE antennas and wireless propagation letters. – 2018. – V. 18. – ¹. 2. – P. 245-249. https://doi.org/10.1109/lawp.2018.2888487
25. Tural'chuk P. A., Vendik O. G., Vendik I. B. Expansion of the main beam of the Dolph-Chebyshev lattice using the Kotelnikov function expansion // Ehlektronika i mikroehlektronika SVCH. – 2018. – V. 1. – P. 213-216. (In Russian)
26. Valle P. et al. The design, modeling and development of WRAS antenna for GALILEOSAT // Proc 26th ESA Antenna Technology Workshop, Noordwijk – 2003. – URL: http://www.idscompany.it/upload7/File/design__modelling.pdf
27. Rusov YU.S., Propastin A.A. Application of odd Mathieu functions for the synthesis of a sector radiation pattern of a multi-element radiator // Radiostroenie. – 2021. – ¹. 3. – P. 1-12. https://doi.org/10.36027/rdeng.0321.0000194 (In Russian)
28. Mitrokhin V.N., Propastin A.A. Synthesis of the radiating system forming the flat-topped radiation pattern with the most flat top // 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). – IEEE, 2017. – P. 319-322. https://doi.org/10.1109/RSEMW.2017.8103662
29. Manichev A.O., Kondrat'ev A.S., Balagurovskij V.A. Methods of phase formation of extended deep zeros in the directional pattern of headlamps with random distortions of the amplitude-phase distribution // Antenny. – 2009. – ¹. 9. – P. 12-28. (In Russian)
30. Mitrohin V.N., Mozharov E.O. Methods of formation and evaluation of a focused field in microwave technology // Antenny. – 2015. – ¹. 3. –P. 39-46. (In Russian)
31. Golubeva N.S., Mitrokhin V.N. Fundamentals of ultrahigh frequency radio electronics. – 2008. (In Russian)
32. Serhir M., Besnier P., Drissi M. Antenna modeling based on a multiple spherical wave expansion method: Application to an antenna array // IEEE transactions on antennas and propagation. – 2009. – V. 58. – ¹. 1. – P. 51-58. https://doi.org/10.1109/TAP.2009.2036284
For citation:
Mozharov E.O., Afanas'ev I.YA., Loskutov V.YU., Litvinov E.S. Comparative evaluation of methods for antenna arrays electrical characteristics calculating // Journal of Radio Electronics. – 2025. – ¹. 6. https://doi.org/10.30898/1684-1719.2025.6.10 (In Russian)