Zhurnal Radioelektroniki - Journal of Radio Electronics. ISSN 1684-1719. 2020. No. 3
Contents

Full text in English (pdf)
Russian page

 

DOI 10.30898/1684-1719.2020.3.15

UDC 539.2

 

Nanostructured materials based on opal matrixes and magnetic oxides Ni(Ño)-Zn-Fe

 

A. F. Belyanin 1, A. S. Bagdasaryan 2,3, S. A. Bagdasaryan 2, E. R. Pavlyukova 3

 1 Central Research Technological Institute “Technomash”, Ivan Franko Str., 4, Moscow, 121108, Russia

2 Scientific Engineering Center “Technological developments of telecommunication and radio frequency identification”, JSC, Sukharevskaya Sq.,4-1 Moscow, 127051, Russia

3 Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya Str., 11-1, Moscow, 125009, Russia

 

The paper is received on March 18, 2020

 

Abstract. The conditions for the formation of opal matrixes representing the lattice packing of spheric particles SiO2 with diameter ~260 nm (Δd < 4%) and single-domain size (regions with proper packing of spheric particles) ≥ 0,1 mm3 are presented. The processes for obtaining of 3D magnetic nanocomposites by synthesis of NiXZn1-XFe2O4 and CoXZn1-XFe2O4 crystallites in communicating spatially ordered inter-spherical voids, occupying ~ 26% of the volume of the opal matrix, are shown. The composition and structure of nanocomposites were researched by electron microscopy and X-ray diffractometry. The results of using samples of magnetic nanocomposites containing Ni0.5Zn0.5Fe2O4 and Co0.5Zn0.5Fe2O4 crystallites of 15–50 nm in size as inserts in Y circulators are discussed.

Key words: nanocomposites, opal matrix, spinel, 3D packaging of nanocrystallites, magnetic characteristics.

References

1. Armstronga E., O’Dwyer C. Artificial opal photonic crystals and inverse opal structures – fundamentals and applications from optics to energy storage.  Journal of materials chemistry C. 2015. Vol. 3. No. 24. P. 6109–6143. DOI: 10.1039/c5tc01083g

2. Rinkevich A.B., Perov D.V., Samoylovich M.I., Belyanin A.F., Pashchenko P.V., Timofeev M.A. opal matrixes with multilayer structure Co/Ir and 3D-nanocomposites opal matrix – Co compounds.  Inzhenernzya fizika - Engineering Physics. 2009. No. 10. P. 18–24 (In Russian)

3. Tuyen L.D., Wu C.Y., Anh T.K., Minh L.Q., Kan H-C., Hsu C.C. Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals.  Journal of experimental nanoscience. 2012. Vol. 7. No. 2. P. 198204.

4. Mıguez H., Blanco A., Lopez C., Meseguer F., Yates H.M., Pemble M.E., Lopez-Tejeira F., Garcıa-Vidal F.J., Sanchez-Dehesa J. Face centered cubic photonic bandgap materials based on opal-semiconductor composites.  Journal of lightwave technology. 1999. Vol. 17. No. 11. P. 1975–1981.

5. Nishijima Y., Ueno K., Juodkazis S., Mizeikis V., Misawa H., Tanimura T., Maeda K. Inverse silica opal photonic crystals for optical sensing applications.  Optics express. 2007. Vol. 15. No. 20. P. 12979–12988.

6. Sarychev A.K., Shalaev V.M. Electrodynamics of metamaterials. World scientific and Imperial College Press, 2007. 200 p.

7. Kong J.A. Electromagnetic wave interaction with stratified negative isotropic media.  Progress in electromagnetics research, PIER. 2002. Vol. 35. P. 1–52.

8. Belyanin À., Bagdasarian A., Bagdasarian S., Luchnikov P., Katakhova N. Magnetic nanocomposites based on opal matrices.  Key Engineering Materials. 2018. Vol. 781. KEM. Ð. 149–154. DOI: 10.4028/www.scientific.net/KEM.781.149

9. Hill N.A. Why are there so few magnetic ferroelectrics?  The Journal of Physical Chemistry B. 2000. Vol. 104 (29). P. 6694–6709.

10. Belyanin À.F., Bagdasaryan A.S, Bagdasaryan, S.A., Borisov, V.V., Pavlyukova E.R.  X-radiation under pulse laser impact on opal matrix. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 6. URL http://jre.cplire.ru/jre/jun19/12/text.pdf. DOI 10.30898/1684-1719.2019.6.12

11. Ozbay E., Temelkuran B., Bayindir M. Microwave applications of photonic crystals.  Progress in Electromagnetics Research. PIER. 2003. Vol . 41. P. 185–209.

12. Rinkevich A.B., Samoylovich M.I., Kleshcheva S.M. Magnetic properties of opal matrixes with spinel ferrite nanoparticles. Proceedings of XVIII International Scientific and Technological Conference ”High technologies in the industry of Russia (materials and devices for functional electronics and microphotonics)”. Ìoscow, Bauman MSTU. 2012. P. 146–156. (In Russian)

13. Belyanin A.F., Bagdasaryan A.S., Manufacturing and physical properties of nanocomposites: opal matrixes - multiferroic materials. Naukoyemkiye tekhnologii -  Journal Science Intensive Technologies. 2017. Vol. 18. No. 9. P. 59–66. (In Russian)

14. Belyanin A.F., Bagdasaryan A.S., Gulyaev Yu.V., Yurin A.I., Pavlyukova E.R. Structure, dielectric and magnetic properties of nanocomposites based on opal matrixes, phosphates and vanadates of metals.  Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 5. URL http://jre.cplire.ru/jre/may19/3/text.pdf. DOI 10.30898/1684-1719.2019.5.4 (In Russian)

15. Samoylovich M.I., Rinkevich A.B., Bovtun V., Belyanin A.F., Kempa M., Nuzhnyy D., Tsvetkov M.Yu., Kleshcheva S.M. Optical, magnetic, and dielectric properties of opal matrices with intersphere nanocavities filled with crystalline multiferroic, piezoelectric, and segnetoelectric materials. Russian Journal of General Chemistry. 2013. Vol. 83. No. 11. P. 2132–2147.

16. Golovanov O.A., Makeeva G.S., Samoylovich M.I., Rinkevich A.B. Nonreciprocal devices of superhigh frequencies based on magnetic nanocomposites from opal matrixes.  Journal of Communications Technology and Electronics. 2016. Vol. 61. No. 2. P. 197-203.

17. Rinkevich A. B., Golovanov O.A., Samoylovich M.I., Shyrshikov D.N., Gorlov G. G. Y-circulator with cylindrical insert made from magnetic material.  Useful model patent RU 153042 of 03.06.2014. (In Russian)

 

For citation:

Belyanin A.F., Bagdasaryan A.S., Bagdasaryan S.A., Pavlyukova E.R. Nanostructured materials based on opal matrixes and magnetic oxides Ni(Ño)-Zn-Fe. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 3. Available at http://jre.cplire.ru/jre/mar20/15/text.pdf.  DOI 10.30898/1684-1719.2020.3.15