Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №3
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2022.3.3
Computational envelope methods for simulating radio frequency integrated circuits with wide frequency range
S.G. Rusakov, S.L. Ulyanov
Institute for Design Problems in Microelectronics of the Russian Academy of Sciences, Sovetskaya 3, Moscow 124365, Russia
The paper was received on March 3, 2022.
Abstract. Numerical techniques to enhance the computational efficiency of envelope methods for determining steady state and transient response in radio-frequency circuits are discussed. A way of computing spectral components of the output signal after completion of the analysis using Fourier envelope method is suggested. The adaptive algorithm of envelope following is presented which exploits high order one step methods for integrating circuit differential equations on the period of high frequency.
Key words: radio frequency circuits, circuit simulation, periodic steady state, Fourier envelope method, envelope following method.
Corresponding author: Ulyanov Sergey Leonidovich, ulyas@ippm.ru
References
1. Glebov A.L., Gurariy M.M., Zharov M.M. Aktualnye problemi modelirovaniya v sistemah avtomatizacii shemotehnicheskogo proektirovania [Advanced circuit simulation methods in electronic design automation]. Мoscow, Nauka. 2003. 430 р. (in Russian).
2. Kundert K.S. Introduction to RF Simulation and Its Application. J. of Solid-State Circuits. 1999. V.34. №9. P.1298-1319.
3. Sharrit D. New method of analysis of communication systems. Proc. MTTS’96 WMFA: Nonlinear CAD Workshop. 1996.
4. Feldmann P., Roychowdhury J. Computation of circuit waveform envelopes using an efficient, matrix-decomposed harmonic balance algorithm. Int. Conf. on Computer Aided Design. San Jose. CA. 1996. P.295-300.
5. Norenkov I.P., Evstifeev Y.A., Manichev V.B. Method for fast analysis of multi period electronic circuits. Radiotehnika [Radioengineering]. 1987. №2. С.71-74 (in Russian).
6. Kundert K., White J., Sangiovanni-Vincentelli A. An envelope-following method for the efficient transient simulation of switching power and filter circuits. IEEE/ACM Int. Conf. on Computer Aided Design. Santa Clara. CA. 1988.
P.446-449.
7. Linaro D., del Giudice D., Brambilla A., Bizzarri F. Application of Envelope-Following Techniques to the Shooting Method. IEEE Open J. Circuits Syst. 2020. V.1. P.22-33.
8. Petzold L.R. An efficient numerical method for highly oscillatory ordinary differential equations. SIAM J. Numer. Anal. 1981. V.18. №3. P.455-479.
9. Brambilla A., Maffezzoni P. Envelope following method for the transient analysis of electrical circuits. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications. 2000. V.47. №7. P.999-1008.
10. Brambilla A., Maffezzoni P. Envelope-following method to compute steady-state solutions of electrical circuits. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications. 2003. V.50. №3. P.407-417.
11. Farhan M.A., Gad E., Nakhla M.S., Achar R. High order and A-stable envelope following method for transient simulations of oscillatory circuits. IEEE Trans. Microw. Theory Techn. 2014. V.62. №12. P.3309-3317.
12. Farhan M.A., Nakhla M.S., Gad E., Achar R. Parallel High-Order Envelope-Following Method for Fast Transient Analysis of Highly Oscillatory Circuits. IEEE Trans. on very large scale integration (VLSI) systems. 2017. V.25. №1. P.261-270.
13. Roychowdhury J. Making Fourier-Envelope Simulation Robust. IEEE/ACM Int. Conf. on Computer Aided Design. San Jose. CA. 2002. P.240-245.
14. Vlach J., Singhal K. Computer Methods for Circuit Analysis and Design. New York, Van Nostrand Reinhold. 1983. 384 р.
15. Kundert K. Accurate Fourier Analysis for Circuit Simulators. IEEE Custom Integrated Circuits Conf. San Diego. CA. 1994. P.25-28.
16. Gourary М.М., Zharov М.М., Ulyanov S.L., Khodosh L.S. The computational method to determine nonlinear distortion under multitone test signals. Problemi razrabotki perspektivnyh mikro i nanoelektronnyh sistem [Problems of Perspective Micro- and Nanoelectronic Systems Development]. 2012. №1. С.157-162. (in Russian).
17. Gourary М.М., Zharov М.М., Rusakov S.G., Ulyanov S.L. The adaptive algorithm for the analysis of oscillatory circuits. Problemi razrabotki perspektivnyh mikro i nanoelektronnyh sistem [Problems of Perspective Micro- and Nanoelectronic Systems Development]. 2020. №3. С.28-34 (in Russian).
18. Hairer E., Norsett S.P., Wanner G. Solving Ordinary Differential Equations I: Nonstiff Problems. Berlin, Springer-Verlag. 1993. 530 р.
19. Gad E., Nakhla M., Achar R., and Zhou Y. A-Stable and L-Stable high order integration methods for solving stiff differential equations. IEEE Trans. Computer-Aided Design of Integrated Circ. Sys. 2009. V.28. №9. P.1359-1372.
20. Gourary M.M., Rusakov S.G., Ulyanov S.L., Zharov M.M. The Implementation of High-Order Single-Step Integration Technique into Circuit Simulator. IEEE East-West Design & Test Symposium. Kazan. Russia. 2018. P.123-128.
21. Gourary M.M., Zharov M.M., Rusakov S.G., Ulyanov S.L. The analysis of oscillatory circuits using single-step high order integration methods. Nanoindustria [Nanoindustry]. 2020. V.13. №S5-2(102). P.437-441 (in Russian).
For citation:
Rusakov S.G., Ulyanov S.L. Computational envelope methods for simulating radio frequency integrated circuits with wide frequency range. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №3. https://doi.org/10.30898/1684-1719.2022.3.3 (In Russian)