Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №3
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.3.10
Sparse Image Interpolation Methods Working in the Frequency Domain
A.V. Kokoshkin
Kotelnikov IRE RAS, Fryazino branch
141120, Russia, Fryazino, Vvedenskogo sq., 1
The paper was received February 27, 2023
Abstract. The work compares the work of sparse image interpolation methods such as: - interpolation method of sequential computation of the Fourier spectrum (IMSCS), the method of projections onto convex sets (projections onto convex sets, POCS), and the method of amplitude iterations (MAI). All calculations necessary for the reconstruction of sparse images are performed only on spatial spectra. As an example, an aerospace digital image is used, which is typical for the tasks of remote sensing of the earth's surface. A high degree of sparseness is modeled (90 percent of the information is missing). The effectiveness of the studied methods was carried out according to several objective criteria.
Key words: remote sensing, sparse digital images, image processing, interpolation method of sequential computation of the Fourier spectrum, projection onto convex sets, amplitude iteration method, histogram similarity index measure.
Financing: The work was carried out within the framework of the state task of the Kotelnikov Institute of Radioengineering and Electronics (IRE) of Russian Academy of Sciences № 075-01110-23-01.
Corresponding author: Kokoshkin Alexander Vladimirovich, shvarts65@mail.ru
References
1. Park J., Park D-C, Marks R.J. II, El-Sharkawi M.A. Block loss recovery in DCT image encoding using POCS. Proceedings of the IEEE International Symposium on Circuits and Systems. 2002. https://doi.org/10.1109/ISCAS.2002.1010686
2. Huang H., Makur A. A new iterative reconstruction scheme for signal reconstruction. Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS '08). 2008. https://doi.org/10.1109/APCCAS.2008.4746028
3. Feichtinger H.G., Kozek W., Strohmer T. Reconstruction of signals from irregular samples of its short-time Fourier transform. Wavelet Applications in Signal and Image Processing III. 1995. V.2569. P.140-150. https://doi.org/10.1117/12.217570
4. Guven H.E., Ozaktas H.M., Cetin A.E., Barshan B. Signal recovery from partial fractional Fourier domain information and its applications. IET Signal Processing. 2008. V.2. №1. P.15-25. http://doi.org/10.1049/iet-spr:20070017
5. Serbes A., Durak L. Optimum signal and image recovery by the method of alternating projections in fractional Fourier domains. Communications in Nonlinear Science and Numerical Simulation. 2010. V.15. №3. P.675-689. https://doi.org/10.1016/j.cnsns.2009.05.013
6. Kokoshkin A.V., Korotkov V.A., Korotkov K.V., Novichikhin E.P. Retouching and restoration of missing image fragments by means of the iterative calculation of their spectra. Computer Optics. 2019. V.43. №6. P.1030-1040. https://doi.org/10.18287/2412-6179-2019-43-6-1030-1040 (In Russian)
7. Kokoshkin A.V., Korotkov V.A., Novichikhin E.P. Reconstruction of Acoustic Signals According to Incomplete Data. Journal of Communications Technology and Electronics. 2020. V.65. №12. P.1399-1406. https://doi.org /10.1134/S1064226920120104
8. Kokoshkin A.V., Novichikhin E.P. Application of the Interpolation Method of Sequential Computation of the Fourier Spectrum to Sparse Images. REHNSIT: Radioehlektronika. Nanosistemy. Informatsionnye tekhnologii [RENSIT: Radioelectronics. Nanosystems. Information Technologies]. 2022. V.14. №2. P.165-174. https://doi.org/10.17725/rensit.2022.14.165
9. Kokoshkin A.V. Algorithms of the method of amplitude iterations and POCS for the reconstruction of sparse two-dimensional signals. Zhurnal radioehlektroniki [Journal of Radio Electronics] [online]. 2022. №9. https://doi.org/10.30898/1684-1719.2022.9.7 (In Russian)
10. Kokoshkin A.V., Korotkov V.A., Korotkov K.V., Novichikhin E.P. Comparison of objective methods of assessing quality of digital images. Сравнение объективных методов оценки качества цифровых изображений. Zhurnal radioehlektroniki [Journal of Radio Electronics] [online]. 2015. №6. http://jre.cplire.ru/jre/jun15/15/text.html (In Russian)
11. Gonzalez R.C., Woods R.E., Digital Image Processing. NJ. Prentice Hall, International Version 3rd Edition. 2012. 1071p.
For citation:
Kokoshkin A.V. Sparse Image Interpolation Methods Working in the Frequency Domain. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. №3. https://doi.org/10.30898/1684-1719.2023.3.10 (In Russian)