Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹3

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.3.4  

 

 

Mathematical MODEL

OF FUNCTIONING COGNITIVE RADIO SYSTEM

 

V.A. Golovskoy

 

Krasnodar Higher Military School

350090, Russia, Krasnodar, Krasina str., 4

 

The paper was received January 25, 2024.

 

Abstract. The functioning of a promising cognitive radio system in the context of an electronic conflict is considered. As a result of the analysis, the correspondence of the required intellectual abilities of the cognitive radio system, the tasks to be solved and the intelligent algorithms proposed by the researchers for the realization of these abilities was revealed. The aim of the work is to develop a mathematical model that allows us to describe the adaptation of a conflict–resistant cognitive radio system and assess the complexity of the corresponding algorithms. Two groups of methods were used: general scientific methods – abstraction, generalization, analysis, synthesis, as well as special methods of graph theory, criteria importance theory, algorithm theory and set theory. Two new mathematical models are presented. The first model describes the state of the subscriber of the radio system from a combinatorial point of view, the second describes the functioning of the cognitive radio system in conditions of electronic conflict. The latter model is formalized using graph theory – an r-weighted multigraph is constructed, the vertices of which are identified with the states of the subscribers of the radio system, and the corresponding weight vectors are assigned to the edges. The elements of each vector of weights qualitatively characterize the functioning of the cognitive radio system according to the selected indicators. An example is given with indicators characterizing the functioning of the radio system: stealth, noise immunity, energy efficiency and information transfer rate. The graph model allows you to generalize the description of various methods for obtaining knowledge about the environment and managing radio system resources, and also allows you to evaluate the computational complexity of adaptation algorithms. The graph model also makes it possible to describe the intellectual abilities of a radio system both from the standpoint of a production approach and from the standpoint of reinforcement learning. The given estimates of the computational complexity of some tasks allow us to divide the tasks into two groups: those solved by subscribers and the control subsystem. The consistency of proposals for the separation of computational tasks with the principles of transfer learning is shown.

Key words: graph, model, cognitive radio, conflict stability, criterion, Pareto optimality, electronic environment.

Corresponding author: Golovskoy Vasiliy Andreevich, golovskoy_va@mail.ru  

 

 

References

1. Hilal W., Gadsden S.A., Yawney J. Cognitive Dynamic Systems: A Review of Theory, Applications, and Recent Advances // Proceedings of the IEEE. – 2023. Vol. 111. no. 6. pp. 575-622. http://doi.org/10.1109/JPROC.2023.3272577

2. Report ITU-R SM.2152. Definitions of Software Defined Radio (SDR) and Cognitive Radio System (CRS). URL: https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-SM.2152-2009-PDF-e.pdf (äàòà îáðàùåíèÿ: 11.12.2023).

3. Benmammar B. Recent Advances on Artificial Intelligence in Cognitive Radio Networks // International Journal of Wireless Networks and Broadband Technologies. – 2020. – Vol. 9. – ¹. 1. – P. 27-42. http://doi.org/10.4018/IJWNBT.2020010102

4. Golubinsky A.N. Primenenie iskusstvennoj nejronnoj seti v vide mnogoslojnogo perseptrona dlya formirovaniya rejtinga chastotnyh kanalov v sisteme kognitivnogo radio [Application of an artificial neural network in the form of a multilayer percep-tron to form a rating of frequency channels in the system of cognitive radio] // Teoriya i tekhnika radiosvyazi. – 2020. – ¹. 2 – P. 64–73.

5. Adamovskiy YA. R., Chertkov V. M., Bohush R. P. Model for building of the radio environment map for cognitive communication system based on LTE // Computer research and modeling. – 2022. – Vol. 14. – ¹. 1. – P. 127-146. https://doi.org/10.20537/2076-7633-2022-14-1-127-146

6. Kandaurova E. O., Chirov D. S. Neural Network Algorithm for Predicting Spectrum Occupancy in Cognitive Radio Systems // 2023 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), Pskov, Russian Federation. – 2023. – P. 1-5. http://doi.org/10.1109/SYNCHROINFO57872.2023.10178650

7. Bharti B., Thakur P., Singh G. A framework for spectrum sharing in cognitive radio networks for military applications // IEEE Potentials. – 2021. – Vol. 40. – ¹. 5. – P. 39–47. http://doi.org/10.1109/MPOT.2017.2751656

8. Artemov M. L., Borisov V. I., Makoviy V. A., Slichenko M. P. Avtomatizirovannye sistemy upravleniya, radiosvyazi i radioelektronnoi bor'by. Osnovy teorii i printsipy postroeniya [Automated control systems, radio communications and electronic warfare. Fundamentals of theory and principles of construction]. M.: Radio Engineering, 2021. P. 556.

9. Abdullah H. M., Kumar A., Qasem Ahmed A. A., Saeed Mosleh M. A. Hybrid Optimization Based on Spectrum Aware Opportunistic Routing for Cognitive Radio Ad Hoc Networks // Informatics and Automation. – 2023. – Vol. 22. – ¹. 4. – P. 880-905. http://doi.org/10.15622/ia.22.4.7

10. Senin Î. G. Model of a radio line resource management system using a fuzzy logic metematic apparatus // Izvestiya Tul''skogo gosudarstvennogo universiteta. Tekhnicheskie nauki . – 2021. – ¹. 9. – Ñ. 236-242. http://doi.org/10.24412/2071-6168-2021-9-236-242

11. Genov A. A., Slepyh A. A., Suhov A. V., Filatov V. I. Evaluation of the impacts of random intentional interference on a data transmission system with cognitive pseudorandom switching of operating frequencies// Journal of Radio Electronics. – ¹. 11. https://doi.org/10.30898/1684-1719.2023.11.7

12. Baturin A. S., Hvorenkov V. V., Shishakov K. V. Modern solutions to improve the energy efficiency of radio lines for the technical renewal of radio stations of integrated communication systems // Vestnik IZHGTU imeni M.T. Kalashnikova. – 2022. – Ò. 25. – ¹. 4. – P. 47-62. http://doi.org/10.22213/2413-1172-2022-4-47-62

13. Mourougayane K., Srikanth S. A tri-band full-duplex cognitive radio transceiver for tactical communications // IEEE Communications Magazine, 2020. – ¹. 58. – P. 61–65. http://doi.org/10.1109/MCOM.001.1900329

14. Jain P., Jaiswal R. K., Srivastava K. V., Ghosh S. An Improvised Four-Port Multifunctional MIMO Antenna for Integrated Cognitive Radio System // IEEE Access. – 2023. – Vol. 11. – P. 66201-66211. http://doi.org/10.1109/ACCESS.2023.3289843

15. Áîðèñîâ Â. È., Âèëêîâ Ñ. Â. Tekhnologicheskaya platforma razvitiya sistem upravleniya, svyazi i radioelektronnoi bor'by [Application of an artificial neural network in the form of a multilayer perceptron to form a rating of frequency channels in the system of cognitive radio], Teoriya i tekhnika radiosvyazi. – 2023. – ¹. 1. – Ñ. 5-11.

16. Nguyen C. T., Van Huynh N., Chu N. H., Saputra Y. M., Hoang D. T, Nguyen D. N., Pham Q.-V., Niyato D., Dutkiewicz E., Hwang W.-J. Transfer Learning for Wireless Networks: A Comprehensive Survey // Proceedings of the IEEE. – 2022. – Vol. 110. – ¹. 8. – P.1073-1115. http://doi.org/10.1109/JPROC.2022.3175942

17. Rapetswa K., Cheng L. Towards a multi-agent reinforcement learning approach for joint sensing and sharing in cognitive radio networks // Intelligent and Converged Networks. – 2023. – Vol. 4. – ¹. 1. – P. 50-75. http://doi.org/10.23919/ICN.2023.0005

18. Nagib A. M., Abou-Zeid H., Hassanein H. S. Accelerating Reinforcement Learning via Predictive Policy Transfer in 6G RAN Slicing // IEEE Transactions on Network and Service Management. – 2023. – vol. 20. – ¹. 2. – P. 1170-1183. http://doi.org/10.1109/TNSM.2023.3258692

19. Belcak P., Wattenhofer R. Exponentially Faster Language Modelling // https://doi.org/10.48550/arXiv.2311.10770

20. Kazakov L. N., Kubyshkin E. P., Paley D. E. Construction of an adaptive motion control system optimal information exchange scheme for a group of unmanned aerial vehicles // Modeling and analysis of information systems. – 2023. – Vol. 30. ¹. 1. – P. 16-26. http://doi.org/10.18255/1818-1015-2023-1-16-26

21. Manaenko S. S, Dvornikov S. V., Pshenichnikov A. V. Theoretical aspects in forming complex structure signal // Informatics and automation. – 2022. – vol. 21. – ¹. 1. – P. 68-94. https://doi.org/10.15622/ia.2022.21.3

22. Cognitive Radio in NATO. STO technical report IST077/RTG-035. 2014 [Ýëåêòðîííûé ðåñóðñ]. – URL: https://www.sto.nato.int/publications/STO%20Technical%20Reports/STO-TR-IST-077/$$$TR-IST-077-ALL.pdf (äàòà îáðàùåíèÿ: 11.01.2024).

23. Suchański M., Kaniewski P., Romanik J., Golan E., Zubel K. Radio environment maps for military cognitive networks density of small-scale sensor network vs. map quality // EURASIP Journal on Wireless Communications and Networking. – 2020. – Vol. 2020. – ¹. 1. – P. 1-20. https://doi.org/10.1186/s13638-020-01803-4

24. Gudkov M. A., Dvornikov A. S., Sorokin K. N. Primenenie kognitivnyh radiosistem dlya obespecheniya svyazi s robotizirovannymi platformami voennogo naznacheniya [Application of cognitive radio systems for communication with military robotic platforms] // Trudy II Voenno-nauchnoj konferencii «Robotizaciya Vooruzhennyh Sil Rossijskoj Federacii» [Proceedings of the II-th Military Scientific Conference “Robotization of the Armed Forces of the Russian Federation”], Moscow. – 2017. P. 440-444.

25. Golovskoy V. A., Filinov V. S. Proposals for the creation of cognitive data transmission systems for robotic complex // T-Comm. – 2019. – Vol. 13. – ¹. 9. – P. 22-29. http://doi.org/10.24411/2072-8735-2018-10306

26. Golovskoy V. A. The functional model of the resource management subsystem of the cognitive radio system of the robotic complex // Izvestiya SFedU. Engineering Sciences. – 2023. – ¹. 1(231). – P. 241-251. http://doi.org/10.18522/2311-3103-2023-1-241-251

27. Astapenko Yu. A. et al. Konfliktno-ustoichivye radioelektronnye sistemy. Metody analiza i sinteza [Conflict-resistant electronic systems. Methods of analysis and synthesis]. Ì.: Radiotehnika. 2015. P. 312.

28. El'cov O. N., Krutskih P. P., Radzievskij V. G. Konfliktnaja ustojchivost' robotizirovannyh sistem [Conflict resistance of robotic systems]. Ì.: Radiotehnika, 2023. P. 352.

29. Sakhnin A. A. Comprehensive assessment of the electronic security of military communications systems. Monograph [Comprehensive assessment of the electronic security of military communications systems. Monograph]. Ì.: Radiotehnika, 2022. P. 312.

30. Haigh K.Z., Andrusenko J. Cognitive Electronic Warfare: An Artificial Intelligence Approach. Boston: ARTECH HOUSE. 2021. 288 p.

31. Golovskoy V. A., Chernuha Yu. V., Semenyuk D. B. Formalization of the problem of creating a data transmission system in a robotic system operating in conditions of antagonistic cyber-electromagnetic activity // Voprosy kiberbezopasnosti. – 2019. – ¹. 6(34). – P. 113-122. http://doi.org/10.21681/2311-3456-2019-6-113-122

32. Golovskoy V. A., Vlokh D. D. Graph model of functioning cognitive radio system // Trudy Severo-Kavkazskogo filiala Moskovskogo tehnicheskogo universiteta svjazi i informatiki. – 2023. – ¹ 1. – Ñ. 11-17.

33. Balunin E. I., Ratushin A. P., Khrapkov D. S., Vlasov M. V. Procedure for generating and decoding codewords of a joint low-density source and channel code // Electromagnetic waves and electronic systems. – 2023. – Vol. 28. – ¹. 3. – P. 28-37. http://doi.org/10.18127/j5604128-202303-04

34. Kopkin E. V., Kobzarev I. M. Information value measure for optimization of flexible diagnosis programs of technical objects // SPIIRAS Proceedings. – 2019. – Vol. 18. – ¹. 6. – P. 1434-1461. http://doi.org/10.15622/sp.2019.18.6.1434-1461

35. Podinovskij V. V. Idei i metody teorii vazhnosti kriteriev v mnogokriterial'nyh zadachah prinjatija reshenij [Ideas and methods of the theory of the importance of criteria in multi-criteria decision-making tasks]. Ì.: Science, 2019. P. 103.

36. Mishchenko S. E., Shatskii V. V., Zemlyanskii S. V., Litvinov A. V., Bezuglov A. A. Method of the amplitude–phase synthesis of a Pareto-optimal planar antenna array // Journal of Communications Technology and Electronics. – 2018. – Vol. 63. – ¹. 1. – P. 33-40. http://doi.org/10.7868/S0033849417010053

37. Vizing V. G. Multicriterial graph problems with maxmin criterion // Diskretnyi analiz i issledovanie operatsii. – 2011. – Ò. 18. – ¹. 5. – P. 3-10.

38. Levin M. Sh. Kombinatornaja optimizacija pri postroenii konfiguracij sistem [Combinatorial optimization in the construction of system configurations] // Information processes. – 2008. – Vol. 8. – ¹. 4. – P. 256-300.

For citation:

Golovskoy V.A. Mathematical model of functioning cognitive radio system. // Journal of Radio Electronics. – 2024. – ¹. 3. https://doi.org/10.30898/1684-1719.2024.3.4 (In Russian)|