"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 5, 2019

contents of issue      DOI  10.30898/1684-1719.2019.5.13    full text in English (pdf)  

A 9-10.6 GHz Microstrip Antenna - UWB Low Noise Amplifier  with differential Noise Canceling technique for IoT applications

 

Dalia Elsheakh 1,2, Heba Shawkey 1 , Sherif Saleh 1

1 Electronics Research Institute, El Bohous St., Dokki, Giza, Egypt

2 Hawaii Center for Advanced Communication, Honolulu, Hawaii, USA

 

The paper is received on May 15, 2019

 

Abstract. An ultra wide band (UWB) receiver front-end operates at the UWB frequency range, starting from 9 GHz-10.6 GHz is proposed in this paper. The proposed system consists of an off-chip microstrip antenna and CMOS differential low noise amplifier with a differential noise canceling (DNC) technique. The proposed antenna is trapezoidal dipole shaped with balun and printed on a low-cost FR4 substrate with dimensions 10x10x0.8 mm3. The balun circuit integrated with the ground antenna to improve the antenna impedance matching. Full-wave EM solver HFSS (High Frequency Structure Simulator) is used for modeling the proposed antenna. The CMOS LNA is designed using UMC 0.13µm CMOS process, and exhibits a flat gain of 19dB, maximum noise figure of 2.9 dB, 1dB compression point -16dBm, 3rd order intercept point (IIP3) -10dBm, and DC power consumption of 2.8 mW at 1.2 V power supply. Applying the noise canceling stage, the NF is reduced by 50% to be 2.75 dB while the power consumption is increased to be 2.9mW.

Keywords: ultra-wideband (UWB), low noise amplifier (LNA), differential noise canceling, low power, low noise figure.

References

1. Federal Communication Commission. First report and order-revision of part 15 of the commission's rules regarding ultra-wideband transmission system. FCC 02 48, 2002. Available at

https://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/2002/fcc02048.pdf

2. P. Srivatsa, A. Pandhare. Indoor Air Quality: IoT Solution. International Journal of Research in Advent Technology, Special Issue National Conference" NCPCI-2016, 2016, pp. 218–220. Available at

http://www.ijrat.org/downloads/ncpci2016/ncpci-46.pdf

3. A. Batra et al. Multi-Band OFDM Physical Layer Proposl. IEEE 802.15-03/267r5, July, 2003. Available at

http://grouper.ieee.org/groups/802/15/pub/2003/Jul03/03268r2P802-15_TG3a-Multi-band-CFP-Document.pdf

4. F. Wu, C. Rüdiger, M. R. Yuce. Real-time performance of a self-powered environmental IoT sensor network system. Sensors, 2017, Vol. 17, No. 2, pp. 282. Available at

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5336020/

5.  GSM Association."5G Spectrum–Public Policy Position. White paper, Nov. 2016. Available at

https://gscoalition.org/cms-data/position-papers/GSC%205G.pdf

6. D. N. Elsheak, E. A. Abdallah. Compact shape of Vivaldi antenna for water detection by using ground penetrating radar (GPR). Microwave and Optical Technology Letters, 2014, Vol. 56, No.8.  Available at

https://onlinelibrary.wiley.com/doi/full/10.1002/mop.28451  

7. G.K.Pandey, H.Verma, M.K.Meshram. Compact antipodal Vivaldi antenna for UWB applications. Electronics Letters, 2015, Vol. 51, No. 4, pp.308-310. Available at  

https://ieeexplore.ieee.org/document/7042450

8. CJ Wang, Li SC, Sun TL, Lin CM. A wideband stepped-impedance open-slot antenna with end-fire directional radiation characteristics. AEU – In.t J. Electron Communication, 2013, Vol.67, pp.175–81. Available at

https://www.sciencedirect.com/science/article/pii/S1434841112001768 

9. F. Zhang, G.-Y.Fang, Y. C., Ji, H.-J. Ju, J-J. Shao. A novel compact double exponentially tapered slot antenna (DETSA) for GPR applications. IEEE Antenna Wireless Propag. Letters, 2011, Vol.10, pp.195–198.  Available at

 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5725158&isnumber=5730210  

10. W. Mazhar D. Klymyshyn, A. Qureshi. Log periodic slot loaded circular Vivaldi antenna for 5-40 GHz UWB application. Microwave and Optical Technology Letters, 2017, Vol.59, pp. 159-163.  Available at

https://onlinelibrary.wiley.com/doi/full/10.1002/mop.30252  

11. D. M. Elsheakh, E. A. Abdallah. Ultra wideband CPW-fed log periodic dipole antenna (LPDA) for wireless communication applications. Journal of Electromagnetic Analysis and Applications, 2018, Vol. 10, pp.119-129.  Available at

https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=85767 

 12. K.-Hou Che, S.-Iuan Liu. Inductorless wideband CMOS low-noise amplifiers using noise-canceling technique. IEEE Transactions on Circuits and Systems—I: Regulated paper, 2012, Vol. 59, No. 2.  Available at

 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995126&isnumber=6139305

13.  X. J. Li1, Y. P. Zhang. CMOS low noise amplifier design for microwave and mm wave applications. Progress In Electromagnetics Research, 2018, Vol. 161, pp.57–85. Available at

http://www.jpier.org/PIER/pier161/06.18012410.pdf  

14. S.-K. Wong, F. Kung. Design of 3 to 5GHz CMOS low noise amplifier for ultra-wideband (UWB) system. Progress in Electromagnetics Research C, 2009, Vol. 9, pp.25–34.  Available at

http://www.jpier.org/PIERC/pierc09/03.09062202.pdf  

15. A. Dorafshan, M. Soleimani. High-gain CMOS low noise amplifier for ultra-wideband (UWB) wireless receiver. Progress in Electromagnetics Research C, 2009, Vol. 7, pp. 183–191. Available at

http://www.jpier.org/PIERC/pierc07/14.08090903.pdf  

16. H. Shawkey. A 3.5 - 4.5 GHz Flat Gain UWB LNA. International Journal of Electrical & Computer Sciences IJECS-IJENS, 2014, Vol. 14, No.6.  Available at

http://ijens.org/Vol_14_I_06/141506-8383-IJECS-IJENS.pdf  

17. Y.e Wang. A 4.7-10.5-GHz Ultra-wideband CMOS LNA using inductive inter- stage bandwidth enhancement technique. 49th IEEE International Midwest Symposium on Circuits and Systems, MWSCAS 2006. Available at

https://ieeexplore.ieee.org/document/4267326  

18. M. Ikram Malek, Suman Saini. Improved two stage ultra-wideband CMOS low noise amplifier without band rejection using low noise active inductor. 2015 International Conference on Signal Processing and Communication Engineering Systems, Jan. 2015, India. Available at

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7052448

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7058237&isnumber=7058196  

19. B. Mazhab, J. Mohammad Yavari. A UWB CMOS low-noise amplifier with noise reduction and linearity improvement techniques. Microelectronics Journal, 2015, Vol. 46,  pp.198-206. Available at

https://www.sciencedirect.com/science/article/abs/pii/S0026269214003565  

20. T. Zainal, A. Zulkifli, A. Marzuki, S. A. Zainol Murad. UWB CMOS low noise amplifier for mode 1. 2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (Prime Asia). Available at

 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8280378&isnumber=8280348  

 

For citation:

Dalia Elsheakh, Heba Shawkey, Sherif Saleh. A 9-10.6 GHz Microstrip Antenna - UWB Low Noise Amplifier  with differential Noise Canceling technique for IoT applications. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 5. Available at http://jre.cplire.ru/jre/may19/13/text.pdf

DOI  10.30898/1684-1719.2019.5.13