Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 5
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2020.5.15

UDC 537.877+532.5.013

 

Dependences of the characteristics of sea surface slopes on the spatial ranges of the waves creating them

 A. S. Zapevalov 1,2, I. P. Shumeyko 2, A. Yu. Abramovich 2

1 Marine Hydrophysical Institute of Russian Academy of Sciences, Kapitanskay str., 2, Sevastopol 299011, Russia

2 Sevastopol State University, University str., 33, Sevastopol 299053, Russia

 

 The paper is received on May 12, 2020

 

Abstract. The dependence of the dispersion of the upwind and crosswind components of sea surface slopes and their anisotropy of the slopes on the range of waves that create them is analyzed. We consider a range with a changing boundary, from the the longest wind waves and/or swell to the to wavelengths λ0. We used data from radio and optical sensing, as well as in situ measurements (measurements by laser slopemeters, wave gauge, and wave buoys). Approximations of the dependence of the dispersion and anisotropy coefficient of the wave field on the parameter λ0 are constructed for the upwind and crosswind components of the slopes. It is shown that the estimation of the anisotropy coefficient obtained in the framework of the well-known Cox-Munk model, which is widely used in applications related to the reflection of electromagnetic waves from the sea surface, is not consistent with the estimates of this coefficient calculated from in situ measurements and from sea surface sounding data in the radio range.

Key words:  sea surface, slopes, remote sensing, Cox-Munk model.

References

1.     Bass F.G., Fuks I.M., Scattering of waves on a statistically uneven surface, Moscow. Nauka Publ. 1972, 424 p. (In Russian)

2.     Ulaby F., Moore R., Fung A. Microwave remote sensing, active and passive.  London. Addison Wesley Publ. Comp. Vol. 1-3, 1983.

3.     Plant W.J. A stochastic, multiscale model of microwave backscatter from the ocean. J. Geoph. Res. 2002. Vol.107. No.C9. P.3120. DOI: 10.1029/2001JC000909.

4.     Danilychev M.V., Nikolaev A.N., Kutuza B.G. Application of the Kirchhoff method for practical calculations in microwave radiometry of wavy sea surface.  Journal of Communications Technology and Electronics. 2009. Vol. 54. No. 8. P. 869–878.

5.     Cox C., Munk W. Measurements of the roughness of the sea surface from photographs of the sun glitter. J. Optical. Soc. America. 1954. Vol. 44. No. 11. P. 838–850.

6.     Hollinger J.P. Passive  microwave  measurements  of  sea  surface  roughness.   IEEE  Trans.  Geosci.  Electr. 1971. Vol. GE-9. No. 3. P. 165-169.

7.     Wilheit T.T. A Model for the Microwave Emissivity of the Ocean's Surface as a Function of Wind Speed. IEEE Trans. Geosci. Electron. 1979. Vol. GE-17, No.4.

8.     Danilytchev M.V., Kutuza, B. G., Nikolaev A.G. The application of sea wave slope distribution empirical dependences in estimation of interaction between microwave radiation and rough sea surface. IEEE Transactions on Geoscience and Remote Sensing. 2009. Vol. 47. No. 2. P. 652–661.

9.     Cheng, Y., Liu, Y., Xu, Q.  A new wind-wave spectrum model for deep water.  Indian J. Marine Sciences. 2006. Vol.35. No. 3. P. 181-194.

10.  Chen P., Yin Q., Huang P. Effect of non-Gaussian properties of the sea surface on the low-incidence radar backscatter and its inversion in terms of wave spectra by an ocean wave. Chinese Journal of Oceanology and Limnology. 2015. Vol. 33. No. 5. P. 1142-1156.

11.  Knyazkov A.S. Modeling of the sea surface in quasi-mirror reflection of radio waves. In: Fizicheskoye i matematicheskoye modelirovaniye protsessov v geosredakh [Physical and mathematical modeling of processes in geomedia]. Moscow. “OOO Print-ProPubl. 2019. P. 86-88. (In Russian)

12.  Zapevalov A.S., Knyazkov A.S., Shumeyko I.P. Describtion of sea surface slopes in applications related to radio wave reflection. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 4. Available at http://jre.cplire.ru/jre/apr20/8/text.pdf. DOI: 10.30898/1684-1719.2020.4.8 (In Russian)

13.  Zapevalov A.S. Distribution of variance of sea surface slopes by spatial wave range. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa – Modern Problems of Remote Sensing of Earth from Space. 2020. Vol. 17. No. 1. P. 211-219. (In Russian)

14.  Hughes B.A., Grant H.L., Chappell R.W. A fast response surface-wave slope meter and measured wind-wave components. Deep-Sea Res. 1977. Vol. 24. No.12. P. 1211-1223.

15.  Khristophorov, G.N., Zapevalov, A.S., Babiy, M.V. Statistics of sea-surface slope for different wind speeds. Okeanologiya - Oceanology. 1992. Vol. 32, Issue 3. P. 452-459. (In Russian)

16.  Kalinin S.A., Leikin I. Measurement of the slopes of wind waves in the Caspian Sea. Izvestiya Akademii nauk SSSR, Fizika atmosfery i okena – Izvestiya,, Atmospheric and Oceanic Physics. 1988, Vol. 24, No. 11, pp. 1210-1217. (In Russian)

17.  Longuett-Higgins M.S., Cartwrighte D.E., Smith N.D. Observation of the directional spectrum of sea waves using the motions of the floating buoy, Proceedings of Conf. Ocean Wave Spectra. Englewood Cliffs. N. Y.: Prentice Hall. 1963. P. 111-132.

18.  Hauser D., Caudal G., Guimbard S., Mouche A.A. A study of the slope probability density function of the ocean waves from radar observations. J. Geoph. Res. 2008. Vol. 113. C02006. DOI: 10.1029/2007JC004264.

19.  Chu, X., He Y., Chen G., Asymmetry and anisotropy of microwave backscatter at low incidence angles.  IEEE Trans. Geosci. Remote Sensing. 2012. Vol. 50. P. 4014-4024.

20.  Bréon F.M., Henriot N. Spaceborne observations of ocean glint reflectance and modeling of wave slope distribution. J. Geoph. Res.: Oceans. 2006. Vol. 111. No. C06005.  DOI: 10.1029/2005JC003343.

21.  Apel J.R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geophys. Res. 1994. Vol. 99.  No. C8. P. 16269-16291.

22.  Longuet-Higgins, M.S. The statistical analysis of a random moving surface. Phil. Trans. Roy. Soc. (A). 1957. Vol. 249. P. 321-387.

23.  Pelevin V.N., Burtzev J.G. Measurements of elementary site slope. In: Optical Investigations in Ocean and Atmosphere. Moscow. Institute of Oceanology of the USSR Academy of Sciences. 1975. P. 202-218. (In Russian)

24.  Donelan M.A., Hamilton J., Hui W.H. Directional spectra of wind-generated waves.  Philos. Trans. Roy. Soc. 1985. A315. P. 509-562.

25.  Hauser D., Caudal G., Guimbard S., Mouche A.A. A study of the slope probability density function of the ocean waves from radar observations. J. Geophys. Res.:Ocean. 2008. Vol. 113. No. C2. P. C02006.

26.  Wu J. Mean square slopes of the wind-disturbed water surface, their magnitude, directionality, and composition. Radio Sci. 1990. Vol. 25, P. 37–48.

27.  Zapevalov A.S. Statistical characteristics of the moduli of slopes of the sea surface. Physical Oceanography. 2002. Vol. 12. No. 1. P. 24-31.

28.  Zapevalov A.S. Determination of the statistical moments of sea-surface slopes by optical scanner. Atmospheric and Oceanic Optics. 2018. Vol. 31. No. 1. P. 91–95. DOI: 10.1134/S1024856018010141.

 

For citation:

Zapevalov A.S., Shumeyko I.P., Abramovich A.Yu. Dependences of the characteristics of sea surface slopes on the spatial ranges of the waves creating them. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 5. Available at http://jre.cplire.ru/jre/may20/15/text.pdf.  DOI: https://doi.org/10.30898/1684-1719.2020.5.15