Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹5

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.5.2

 

 

 

THE CALCULATION ALGORITHM OF SUBLATTICE MAGNETIZATIONS

IN TWO-SUBLATTICE FERRIMAGNET

WITH COMPENSATION POINT. PART 1. PHASE DIAGRAM

 

D.A. Suslov, V.G. Shavrov, V.I. Shcheglov

 

Kotelnikov IRE RAS

125009, Russia, Moscow, st. Mokhovaya, 11 b.7

 

The paper was received April 2, 2024.

 

Abstract. The calculation algorithm of sublattice magnetizations in two-lattice ferromagnet with compensation point is proposed. On the basis of preceding works review it is put the task about calculation of sublattices in individuality. It is investigated the general scheme of whole ferrimagnet magnetization forming which contains two magnetic sublattices both connected by exchange interaction. In geometry of axis symmetry along constant field direction it is investigated the orientational dependence of sublattices magnetization from applied field. It is found the forming conditions of anti-parallel and parallel collinear phases and corner phase between its. It is proposed the model presentation of magnetization dependence from temperature which contain the degree index dependence of general temperature to Curie temperature relation for each sublattice individual. For the simplicity and clear appearance of presentation the power index was choose. It is established the conditions which are necessary for forming the temperature compensation point. It is found the dependencies of deflection corners of each sublattices magnetization from field direction in accounting the given temperature. The decision of proposed excitation for magnetic field allows to find the boundaries of sublattice system transition between phases. On the basis of proposed temperature dependencies of critical transition fields it is drawing the phase diagram of two-sublattice ferrimagnet. It is found two settled on field one above other branches. The lower branch correspond to anti-parallel phase and upper branch correspond to parallel phase. It is found that lower branch contain sufficient quantity of information for to determine the individual both sublattice magnetization. It is proposed the methodic for calculation the individual sublattice magnetization based on the character temperature values and summary magnetizations. On the lower branch marked four character points which correspond to four temperatures and two values of summary magnetization. With using these points it is founded the equation system which allows to determinate the individual magnetizations values. It is proposed some recommendations for further development of investigations.

Keywords: mixed garnet ferrite, compensation temperature, sub-lattice magnetization.

Financing: The work was carried out within the framework of the state assignment of the V.A. Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences.

Corresponding author: Shcheglov Vladimir Ignatyevich, vshcheg@cplire.ru

 

References

1. Lax B., Button K.J. Microwave ferrites and ferrimagnetics. New York, San Francisco, Toronto, London: McGraw-Hill Book Company. 1962.

2. Gurevich A.G. Ferrites on microwave frequencies. M.: Gos. Izd. fiz. mat. lit. 1960.

3. Gurevich A.G. Magnetic resonance in ferrites and antiferromagnetics. M.: Nauka. 1973.

4. Gurevich A., Melkov G. Magnetic oscillations and waves. M.: Nauka-Fizmatlit. 1994.

5. Monosov Ya.A. Nonlinear ferromagnetic resonance. M.: Nauka. 1971.

6. Kurushin E.P., Nefedov E.I. Application of thin mono-crystal ferrite films in microwave designs. // Microelectronics. 1977. V.77. ¹6. P.549-561.

7. Glass H.L. Ferrite films for microwave and millimeter wave devices. // Proc. IEEE. 1988. V.76. ¹2. P.151-158.

8. Shavrov V.G., Shcheglov V.I. Magnetostatic waves in nonuniform fields. M.: Fizmatlit. 2016.

9. Shavrov V.G., Shcheglov V.I. Magnetostatic and electromagnetic waves in complex structures. M.: Fizmatlit. 2017.

10. Shavrov V.G., Shcheglov V.I. Ferromagnetic resonance in conditions of orientation transition. M.: Fizmatlit. 2018.

11. Shavrov V.G., Shcheglov V.I. Dynamics of magnetization in conditions of its orientation changing. M.: Fizmatlit. 2019.

12. Shavrov V.G., Shcheglov V.I. Spin waves in media with exchange and dissipation. M.: Fizmatlit. 2021.

13. Shavrov V.G., Shcheglov V.I., Ivanov A.P. Nonlinear vibrations in the task about hypersound excitation. Syktivkar: OOO “Komi republican printing-house”. 2021.

14. Lisovsky F.V. Physics of bubble domains. M.: Sov. Radio. 1979.

15. O’Dell T. Ferro-magneto-dynamics. Dynamics of bubble, domains and domain walls. M.: Mir. 1983.

16. Malozemoff A.P., Slonczewski J.C. Magnetic domain walls in bubble materials. Academic Press. New York London Toronto Sydney San Francisco. 1979.

17. Magnetoresistive operational memory. Resource on-line: ru.wikipedia.org/wiki/magnetoresistive operational memory.

18. Romanova I. Magnetoresistive memory MRAM of company Everspin Technologies. // Electronics STB. 2014. ¹8.

19. Logunov M., Safonov S., Fedorov A., Danilova A., Moiseev N., Safin A., Nikitov S., Kirilyuk A. Domain wall motion across magnetic and spin compensation points in magnetic garnets. // Phys. Rev. Appl. 2021. V.15. P.064024.

20. Gerasimov M.V., Logunov M.V., Nikitov S.A., Nozdrin Yu.N., Spirin A.V., Tokman I.D. Experimental observation of domain wall motion induced by laser pump-pulse. // Book of Abstracts of Moscow International Symposium on Magnetism (MISM). Moscow. 2017. Published by “Èçä-âî Ôèç.ôàê. ÌÃÓ». Moscow. P.36.

21. Kirilyuk A., Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order. // Rev. Mod. Phys. 2010. V.82. ¹3. P.2731.

22. Bigot J.V., Vomir M. Ultrafast magnetization dynamics of nanostructures. // Ann. Phys. (Berlin). 2013. V.525. ¹1-2. P.2.

23. Jäger J.V., Scherbakov A.V., Linnik T.I., Yakovlev D.R., Wang M., Wadley P., Holy V., Cavill S.A., Akimov A.V., Rushforth A.W., Bayer M. Picosecond inverse magnetostriction in garfenol thin films. // Appl. Phys. Lett. 2013. V.103. ¹3. P.032409(5).

24. Walowski J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics. // J. Appl. Phys. 2016. V.120. ¹14. P.140901(16).

25. Vlasov V.S., Golov A.V., Kotov L.N., Shcheglov V.I., Lomonosov A.M., Temnov V.V. The Modern Problems of Ultrafast Magnetoacoustics (Rewiev). // Acoust. Phys. 2022. V.68. ¹1. P.18-47.

26. Belov K.P., Zaytseva M.A. Rare-earth magnetic materials. // Sov. Phys. Usp. 1972. V106. ¹2. P.365-369.

27. Belov K.P., Zvezdin A.K., Kadontseva A.M., Levitin R.Z. Transitions of spin re-orientation in rare-earth magnetics. // Sov. Phys. Usp. 1976. V119. ¹3. P.447-486.

28. Belov K.P., Zvezdin A.K., Kadontseva A.M., Levitin R.Z. Orientational transitions in rare-earth magnetics. M.: Nauka. 1979.

29. Zvezdin A.K. Field induced phase transitions in ferromagnets. // Handbook of Magnetic Materials. V.9. Elsevier Science. 1995.

30. Davydova M.D., Zvezdin K.A., Kimel A.V., Zvezdin A.K. Ultrafast spin dynamics in ferromagnets with compensation point. // J. Phys. Cond. Matt. 2020. V.32. ¹1. Article No. 01LT01. DOI: 10.1088/1361-648X/ab42fa.

31. Geprags S., Kehlberger A., Coletta F.D. et al. Origin of the spin Seebeck effects in compensated ferromagnets. // Nat. Commun. 2016. V.7. Article No. 10452. DOI: 10.1038/ncomms10452.

32. Gonzales J.A., Andres J.P., Anton R.L. Applied trends in magnetic rare earth / transition metal alloys and multilayers. // Sensors. 2021. V.21. ¹16. P.5615. DOI: 10.3390/s21165615.

33. Medapalli R., Razdolski I., Savoini M et al. The role of magnetization compensation point for efficient ultrafast control of magnetization in Gd24Fe66.5Co9.5 alloy. // Europ. Phys. J. B. 2013. V.86. ¹4. Article No. 183. DOI: 10.1140/epjb/e2013-30682-6.

34. Belov K.P. Ferrimagnets with a weak magnetic sublattice. // Physics-Uspekhi..1996. V.39. ¹6. P.623-634.

35. Clark A.E., Callen E. Neel ferromagnets in large magnetic fields. // J. Appl. Phys. 1968. V.39. ¹13. P.5972-5082.

36. Zvezdin A.K., Popkov A.F. Magnetic resonance in ferromagnets with compensation point. // Phys. Sol. St. (Rus.) 1974. V.16. ¹4. P.1082-1089.

37. Vonsovsky S.V., Shur Ya.S. Ferromagnetism. M.: OGIZ Gostechizdat. 1948.

38. Anderson F.B., Callen H.R. Statistical mechanics and field-induced phase transition of the Heisenberg antiferromagnet. // Phys. Rev. 1964. V.136. ¹4A. P.A1068-A1087.

For citation:

Suslov D.A., Shavrov V.G., Shcheglov V.I. The calculation algorithm of sublattise magnetizations in two-sublattice ferrimagnet with compensation point. Part 1. Phase diagram. // Journal of Radio Electronics. – 2024. – ¹. 5. https://doi.org/10.30898/1684-1719.2024.5.2 (In Russian)