Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹5

Full text in Russian (pdf)

DOI: https://doi.org/10.30898/1684-1719.2024.5.3

THE CALCULATION ALGORITHM OF SUBLATTICE MAGNETIZATIONS

IN TWO-SUBLATTICE FERRIMAGNET WITH COMPENSATION POINT.

PART 2. POWER INDEX APPROXIMATION

Suslov D.A., Shavrov V.G., Shcheglov V.I.

Kotelnikov IRE RAS

125009, Russia, Moscow, st. Mokhovaya, 11 b.7

The paper was received April 2, 2024.

Abstract.The calculation algorithm of sublattice magnetizations in two-sublattice ferrimagnet with compensation point is proposed. On the consideration of magnetic as the combination of spin with two orientations it is found the dependence of magnetization from the temperature in the firm of transcendent equation. The calculated decision of this equation make the coincidence the calculated dependence with experiment in precision about 10%. For the analytic presentation of magnetization temperature dependence in obviously view it is proposed the power index approximation which consist of relation magnetic temperature to curie temperature in six power index. On the basis of power index approximation the phase diagram of two-sublattice ferrimagnet with compensation point is constructed. It is shown the scheme of sublattice magnetization determination on the basis of using meanings by temperature character points of phase diagram lower branch. It is found the equation system which connects the character points parameters with magnetizations in initial point and in the point of maximum of diagram in the temperature more than compensation. By solving this equation system it is found the enough simple analytical expressions which determine the saturation magnetizations both sublattices through parameters of character points on lower brunch of phase diagram. The proposed methods is applied to determination of sublattice magnetizations in experiments by measuring summary magnetization which are curried out on the films of two different compositions using the vibration magnetometer. For the examination of determined meanings the comparison with constructed on its basis phase diagram with the diagram determined in experiment was carried out. The examination shows the coincidence calculated data with experiment in limits from 8 to 40%. The analysis of correspondence determined diagram data with experimental data. It is found the good (to part of percent) coincidence of whole magnetization meaning in the beginning of diagram and also the coincidence of compensation temperature and Curie temperature. For the interpretation of visible deflections it is proposed the hypothesis about influence of third sublattice which changes the magnetizations of main sublattices. It is proposed some recommendations for further development of investigations.

Keywords:mixed garnet ferrite, compensation temperature, sub-lattice magnetization.

Financing:The work was carried out within the framework of the state assignment of the V.A. Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences.

Corresponding author:Shcheglov Vladimir Ignatyevich, vshcheg@cplire.ru

References1. Lax B., Button K.J. Microwave ferrites and ferrimagnetics. New York, San Francisco, Toronto, London: McGraw-Hill Book Company. 1962.

2. Gurevich A.G. Ferrites on microwave frequencies. M.: Gos. Izd. fiz. mat. lit. 1960.

3. Gurevich A.G. Magnetic resonance in ferrites and antiferromagnetics. M.: Nauka. 1973.

4. Gurevich A., Melkov G. Magnetic oscillations and waves. M.: Nauka-Fizmatlit. 1994.

5. Monosov Ya.A. Nonlinear ferromagnetic resonance. M.: Nauka. 1971.

6. Kurushin E.P., Nefedov E.I. Application of thin mono-crystal ferrite films in microwave designs. // Microelectronics. 1977. V.77. ¹6. P.549-561.

7. Glass H.L. Ferrite films for microwave and millimeter wave devices. // Proc. IEEE. 1988. V.76. ¹2. P.151-158.

8. Shavrov V.G., Shcheglov V.I. Magnetostatic waves in nonuniform fields. M.: Fizmatlit. 2016.

9. Shavrov V.G., Shcheglov V.I. Magnetostatic and electromagnetic waves in complex structures. M.: Fizmatlit. 2017.

10. Shavrov V.G., Shcheglov V.I. Ferromagnetic resonance in conditions of orientation transition. M.: Fizmatlit. 2018.

11. Shavrov V.G., Shcheglov V.I. Dynamics of magnetization in conditions of its orientation changing. M.: Fizmatlit. 2019.

12. Shavrov V.G., Shcheglov V.I. Spin waves in media with exchange and dissipation. M.: Fizmatlit. 2021.

13. Shavrov V.G., Shcheglov V.I., Ivanov A.P. Nonlinear vibrations in the task about hypersound excitation. Syktivkar: OOO “Komi republican printing-house”. 2021.

14. Lisovsky F.V. Physics of bubble domains. M.: Sov. Radio. 1979.

15. O’Dell T. Ferro-magneto-dynamics. Dynamics of bubble, domains and domain walls. M.: Mir. 1983.

16. Malozemoff A.P., Slonczewski J.C. Magnetic domain walls in bubble materials. Academic Press. New York London Toronto Sydney San Francisco. 1979.

17. Magnetoresistive operational memory. Resource on-line: ru.wikipedia.org/wiki/magnetoresistive operational memory.

18. Romanova I. Magnetoresistive memory MRAM of company Everspin Technologies. // Electronics STB. 2014. ¹8.

19. Logunov M., Safonov S., Fedorov A., Danilova A., Moiseev N., Safin A., Nikitov S., Kirilyuk A. Domain wall motion across magnetic and spin compensation points in magnetic garnets. // Phys. Rev. Appl. 2021. V.15. P.064024.

20. Gerasimov M.V., Logunov M.V., Nikitov S.A., Nozdrin Yu.N., Spirin A.V., Tokman I.D. Experimental observation of domain wall motion induced by laser pump-pulse. // Book of Abstracts of Moscow International Symposium on Magnetism (MISM). Moscow. 2017. Published by “Èçä-âî Ôèç.ôàê. ÌÃÓ». Moscow. P.36.

21. Kirilyuk A., Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order. // Rev. Mod. Phys. 2010. V.82. ¹3. P.2731.

22. Bigot J.V., Vomir M. Ultrafast magnetization dynamics of nanostructures. // Ann. Phys. (Berlin). 2013. V.525. ¹1-2. P.2.

23. Jäger J.V., Scherbakov A.V., Linnik T.I., Yakovlev D.R., Wang M., Wadley P., Holy V., Cavill S.A., Akimov A.V., Rushforth A.W., Bayer M. Picosecond inverse magnetostriction in garfenol thin films. // Appl. Phys. Lett. 2013. V.103. ¹3. P.032409(5).

24. Walowski J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics. // J. Appl. Phys. 2016. V.120. ¹14. P.140901(16).

25. Vlasov V.S., Golov A.V., Kotov L.N., Shcheglov V.I., Lomonosov A.M., Temnov V.V. The Modern Problems of Ultrafast Magnetoacoustics (Rewiev). // Acoust. Phys. 2022. V.68. ¹1. P.18-47.

26. Belov K.P., Zaytseva M.A. Rare-earth magnetic materials. // Sov. Phys. Usp. 1972. V106. ¹2. P.365-369.

27. Belov K.P., Zvezdin A.K., Kadontseva A.M., Levitin R.Z. Transitions of spin re-orientation in rare-earth magnetics. // Sov. Phys. Usp. 1976. V119. ¹3. P.447-486.

28. Belov K.P., Zvezdin A.K., Kadontseva A.M., Levitin R.Z. Orientational transitions in rare-earth magnetics. M.: Nauka. 1979.

29. Zvezdin A.K. Field induced phase transitions in ferromagnets. // Handbook of Magnetic Materials. V.9. Elsevier Science. 1995.

30. Davydova M.D., Zvezdin K.A., Kimel A.V., Zvezdin A.K. Ultrafast spin dynamics in ferromagnets with compensation point. // J. Phys. Cond. Matt. 2020. V.32. ¹1. Article No. 01LT01. DOI: 10.1088/1361-648X/ab42fa.

31. Geprags S., Kehlberger A., Coletta F.D. et al. Origin of the spin Seebeck effects in compensated ferromagnets. // Nat. Commun. 2016. V.7. Article No. 10452. DOI: 10.1038/ncomms10452.

32. Gonzales J.A., Andres J.P., Anton R.L. Applied trends in magnetic rare earth / transition metal alloys and multilayers. // Sensors. 2021. V.21. ¹16. P.5615. DOI: 10.3390/s21165615.

33. Medapalli R., Razdolski I., Savoini M et al. The role of magnetization compensation point for efficient ultrafast control of magnetization in Gd

_{24}Fe_{66.5}Co_{9.5}alloy. // Europ. Phys. J. B. 2013. V.86. ¹4. Article No. 183. DOI: 10.1140/epjb/e2013-30682-6.34. Belov K.P. Ferrimagnets with a weak magnetic sublattice. // Physics-Uspekhi..1996. V.39. ¹6. P.623-634.

35. Clark A.E., Callen E. Neel ferromagnets in large magnetic fields. // J. Appl. Phys. 1968. V.39. ¹13. P.5972-5082.

36. Zvezdin A.K., Popkov A.F. Magnetic resonance in ferromagnets with compensation point. // Phys. Sol. St. (Rus.) 1974. V.16. ¹4. P.1082-1089.

37. Vonsovsky S.V., Shur Ya.S. Ferromagnetism. M.: OGIZ Gostechizdat. 1948.

38. Suslov D.A., Shavrov V.G., Shcheglov V.I. The calculation algorithm of sublattise magnetizations in two-sublattice ferrimagnet with compensation point. Part 1. Phase diagram. // Journal of Radio Electronics. – 2024. – ¹ 5. https://doi.org/10.30898/1684-1719.2024.5.2 (In Russian)

39. Levich V.G. Course of theoretical physics. V.1. M.: Nauka. 1969.

40. Chertov A.G. Units of physical values. M.: High-School. 1977.

41. Korn G.A., Korn T.M. Mathematical handbook for scientists and engineers. New York. McGraw-Hill Book Company. 1968.

42. Vetoshko P.M., Bershansky V.N., Polulyakh S.N., Suslov D.A., Mashirov A.V., Shavrov V.G., Pavlyuk E.P. Magnetooptic visualization of magnetic phases in ferrite-garnet epitaxial film near compensation point. // Journal of Communications Technology and Electronics. 2023. V.68. ¹4. P.391-395.

43. Suslov D.A., Vetoshko P.M., Mashirov A.V., Taskaev S.V., Polulyakh S.N., Berzhansky V.N., Shavrov V.G. Non-collinear phase in rare-earth iron garnet films near compensation temperature. // Crystals. 2023. V.13. ¹9. P.1297(11).

For citation:Suslov D.A., Shavrov V.G., Shcheglov V.I. The calculation algorithm of sublattise magnetizations in two-sublattice ferrimagnet with compensation point. Part 2. Power index approximation. // Journal of Radio Electronics. – 2024. – ¹. 5. https://doi.org/10.30898/1684-1719.2024.5.3 (In Russian)