"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 11, 2016

contents             full textpdf   



Yu. V. Gulyaev 1, V. A. Cherepenin 1, I. V. Taranov 1, V. A. Vdovin 1, V. V. Faykin 1, V. I. Tyukavin 1,
A. V. Sybachin
1, 2, A. A. Yaroslavov 1, 2, V. P. Kim 1, 3, K. V. Potapenkov 1, 3, V. P. Kim 1, 3, G. B. Khomutov 1, 3

 1 Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Moscow

2 – Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow

3 – Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow


The paper is received on October 25, 2016


Abstract. This work is devoted to solving the problem of selectivity of electromagnetic activation of drug carriers. Ultrashort electrical pulses of high voltage were used as a remote stimulating effect. A special class of stimulus-sensitive drug carriers was used representing nanocomposite liposomal membraneous capsules containing significantly anisotropic particles - gold nanorods – bound to the membrane surface. Nanocomposite liposomal capsules were based on the unilamellar liposomes synthesized by standard ultrasonic method using amphiphilic compounds phosphatidylcholine (80%) and stearoylspermine (20%). Gold nanorods with typical diameter 10 nm and 100 nm length were used. as an essentially anisotropic conductive nanoparticles. The duration of an electrical pulse used was about 10 ns. In this case, the electric field strength near the liposome capsules was about 10 kV/cm. The effect of decapsulation of nanocomposite liposomal capsules containing significantly anisotropic gold nanorods bound to the liposomal membrane caused by ultrashort electrical pulses was observed. The effect was registered using conductometric method due to the changes of the conductivity of an aqueous suspension of liposomal capsules which increased due to the NaCl salt release from the internal volume of the capsule. This effect of decapsulation was confirmed independently by transmission electron microscopy technique. The mechanism of destruction of the nanocomposite liposomal membrane was proposed based on the gold nanorods rotational displacement caused by the effect of the external electric pulse. On the basis of this mechanism the theoretical expression for the critical value of the pulse electric field which determines the threshold of the decapsulation effect was found. The numerical value of the found critical field value was in agreement with obtained experimental data. It was experimentally shown that the observed decapsulation effect was due to the presence of gold nanorods bound with liposomal capsules, and decapsulation was not observed in the absence of nanorods.

Keywords: capsules, liposomes, structure, nanoparticles, gold nanorods, polyelectrolytes, pulse of electric field.


1.        Freeman A.I., Mayhew E. Targeted drug delivery. Cancer, 1986, vol. 58, pp. 573–583.

2.        Svenson S., Robert K. Multifunctional Nanoparticles for Drug Delivery Applications: Imaging, Targeting, and Delivery Series. Nanostructure Science and Technology, Springer, 2012, 373p.

3.        Parveen S., Misra R., Sahoo S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology and Medicine, 2012, vol. 8, no. 2, pp. 147-166.

4.        Kataokaa K., Haradaa A., Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews, 2001, vol. 47, no. 1, pp. 113–131.

5.        Donath E., Sukhorukov G.B., Caruso F., Devis S.A., Möhwald H. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angew Chem. Int. Ed. Engl., 1998, vol. 37, 2202 p.

6.        Sukhorukov G.B., Donath E., Davis S.A., Lichtenfeld A., Caruso F., Popov V.I., Möhwald H. Stepwise polyelectrolyte assembly on particle surfaces: A Novel Approach to Colloid Design. Polym. Adv. Technol., 1998, vol. 9, p. 759.

7.        Radtchenko I.L., Sukhorukov G.B., Leporatti S., Khomutov G.B., Donath E., Mohwald H. Assembly of alternated multivalent ion/polyelectrolyte layers on colloidal particles. Stability of the multilayers and encapsulation of macromolecules into polyelectrolyte capsules. J. Colloid. Interface Sci., 2000, vol. 230, no. 2, pp. 272-280.

8.        Sukhorukov G.B., Antipov A., Voigt A., Donath E., Möhwald H. pH-Controlled Macromolecule Encapsulation in and Release from Polyelectrolyte Multilayer Nanocapsules. Macromol. Rapid Commun, 2001, vol. 22, pp. 44-46.

9.        Skirtach A.G., Antipov A.A., Shchukin D.G., Sukhorukov G.B. Remote activation of capsules containing Ag nanoparticles and IR dye by laser light. Langmuir, 2004, vol. 20, pp. 6988-6992.

10.    Radt B., Smith T.A., Caruso F. Optically Addressable Nanostructured Capsules. Adv. Mater, 2004, vol. 16, pp. 2184-2189.

11.    Lu Z., Prouty M.D., Guo Z.., Golub V.O., Kumar C.S.S.R., Lvov Y.M. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co, Au nanoparticles. Langmuir, 2005, vol. 21, pp. 2042-2050.

12.    Gorin D.A., Shchukin D.G., Mikhailov A.I., Kohler K., Sergeev S.A., Portnov S.A., Taranov I.V., Kislov V.V., Sukhorukov G.B. Effect of Microwave Radiation on Polymer Microcapsules Containing Inorganic Nanoparticles. Technical Physics Letters, 2006, vol. 32, no. 1, pp. 70-72.

13.    Gorin D.A., Shchukin D.G., Koksharov Yu.A., Portnov S.A., Köhler K., Taranov I.V., Kislov V.V., Khomutov G.B., Möhwald H., Sukhorukov G.B. Effect of microwave irradiation on composite iron oxide nanoparticle/polymer microcapsules. Progress in Biomedical Optics and Imaging. 2007. V. 6536. P. 653604.

14.    Yu. V. Gulyaev, V. A. Cherepenin, V. A. Vdovin, I. V. Taranov, G. B. Sukhorukov, D. A. Gorin,and G. B. Khomutov. Pulsed Electric Field, Induced Remote Decapsulation of Nanocomposite Liposomes with Implanted Conducting Nanoparticles. Journal of Communications Technology and Electronics, 2015, Vol. 60, No. 11, pp. 1286–1290. DOI: 10.1134/S1064226915110042.

15.     Yu.V. Gulyaev, V.A. Cherepenin, I.V. Taranov, V.A. Vdovin, G.B. Sukhorukov, D.A. Gorin, G.B. Khomutov. Microwave pulse remote activation of polyelectrolyte nanocomposite microcapsules. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2014, No. 12. Available at http://jre.cplire.ru/jre/dec14/25/text.pdf.

16.    Schwendener R.A. Liposomes in biology and medicine. Adv. Exp. Med. Biol., 2007, vol. 620, pp. 117-28.

17.    Lasic D.D. Liposomes: from physics to applications. Elsevier, Amsterdam, New York, 1993, 575 p.

18.    Amstad E., Kohlbrecher J., Muller E., Schweizer T., Textor M., and Reimhult E. Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes. Nano Letters, 2011. V.11, P.1664- 1670.

19.    D. A. Gorin, D. G. Shchukin, A. I. Mikhailov, K. Köhler, S. A. Sergeev, S. A. Portnov, I. V. Taranov, V. V. Kislov, and G. B. Sukhorukov. Effect of Microwave Radiation on Polymer Microcapsules Containing Inorganic Nanoparticles Technical Physics Letters, 2006, Vol. 32, No. 1, pp. 70–72.

20.    Gubin S.P., Gulyaev Yu.V., Khomutov G.B., V V Kislov, V V Kolesov, E S Soldatov, K S Sulaimankulov and A S Trifonov. Molecular clusters as building blocks for nanoelectronics: the first demonstration of a cluster single-electron tunneling transistor at room temperature Nanotechnology. 2002, V.13. ¹2. P.185.

21.    V. V. Kislov, V. V. Kolesov and I. V. Taranov. Electron transport through molecular nanocluster. Radiotekhnika i Elektronika. 2002.V.47.¹ 11. P.1385. 

22.    Kislov V., Medvedev B., Gulyaev Yu., I. Taranov and V. Kashin. Organized superstructures at nanoscale and new functional nanomaterials. International Journal of Nanoscience. 2007. V. 6. ¹ 5. P. 373.

23.    Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005. V.26. ¹18. P.3995-4021.

24.    G. A. Koning, A. M. M. Eggermont, L. H. Lindner, T. L. M. ten Hagen. Hyperthermia and Thermosensitive Liposomes for Improved Delivery of Chemotherapeutic Drugs to Solid Tumors. Pharmaceutical Research. 2010. V.27. ¹8. P.1750.

25.    Artemyev M., Kisiel D., Abmiotko S. M. N. Antipina, G. B. Khomutov, V.V. Kislov, A.A. Rakhnyanskaya. Self-Organized, Highly Luminescent CdSe Nanorod-DNA Complexes. Journal American Chemical Society. 2004. V. 126. ¹ 34. P. 10594.

26.    Yu.V. Gulyaev, V.A. Cherepenin, V.A. Vdovin, I.V. Taranov, V.V. Faykin, V.I. Tyukavin, V.P. Kim, Yu.A. Koksharov, P.A. Kormakova, K.V. Potapenkov, A.A. Rakhnyanskaya, A.V., Sybachin, E.G. Yaroslavova, A.A.Yaroslavov3 G.B. Khomutov. External pulsed electric field remote activation of nanocomposite microcapsules formed from the lipids, polymers and conductive nanoparticles. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2014, No. 12. Available at http://jre.cplire.ru/jre/nov14/9/text.pdf.

27.    Yu. V. Gulyaev, V. A. Cherepenin, V. A. Vdovin, I. V. Taranov, A. A. Yaroslavov, V. P. Kim, and G. B. Khomutov. Pulsed Electric Field, Induced Remote Decapsulation of Nanocomposite Liposomes with Implanted Conducting Nanoparticles. Journal of Communications Technology and Electronics, 2015, Vol. 60, No. 10, pp. 1097–1108. DOI: 10.1134/S1064226915100034.

28.    Schoenbach K.H., Beebe S. J., Buescher E. S. Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics. 2001, V.22. ¹6. P.440-448.

29.    L. D. Landau and E. M. Livshits, Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2003; Pergamon, Oxford, 1984).

30.    V. P. Kim, A. V. Ermakov, E. G. Glukhovskoy, A. A. Rakhnyanskaya, Yu. V. Gulyaev, V. A. Cherepenin, I. V. Taranov, P. A. Kormakova, K. V. Potapenkov, N. N. Usmanov, A. M. Saletsky, Yu. A. Koksharov, and G. B. Khomutov. Planar Nanosystems on the Basis of Complexes Formed by Amphiphilic Polyamine, Magnetite Nanoparticles, and DNA Molecules Nanotechnologies in Russia, 2014, Vol. 9, N. 5–6, pp. 280–287.