Abstract. This work is devoted to solving the problem of
selectivity of electromagnetic activation of drug carriers. Ultrashort
electrical pulses of high voltage were used as a remote stimulating effect. A
special class of stimulus-sensitive drug carriers was used representing
nanocomposite liposomal membraneous capsules containing significantly
anisotropic particles - gold nanorods – bound to the membrane surface.
Nanocomposite liposomal capsules were based on the unilamellar liposomes
synthesized by standard ultrasonic method using amphiphilic compounds
phosphatidylcholine (80%) and stearoylspermine (20%). Gold nanorods with
typical diameter 10 nm and 100 nm length were used. as an essentially
anisotropic conductive nanoparticles. The duration of an electrical pulse used
was about 10 ns. In this case, the electric field strength near the liposome
capsules was about 10 kV/cm.
The effect of decapsulation of nanocomposite liposomal capsules containing
significantly anisotropic gold nanorods bound to the liposomal membrane caused
by ultrashort electrical pulses was observed. The effect was registered using
conductometric method due to the changes of the conductivity of an aqueous
suspension of liposomal capsules which increased due to the NaCl salt release
from the internal volume of the capsule. This effect of decapsulation was
confirmed independently by transmission electron microscopy technique. The
mechanism of destruction of the nanocomposite liposomal membrane was proposed
based on the gold nanorods rotational displacement caused by the effect of the
external electric pulse. On the basis of this mechanism the theoretical
expression for the critical value of the pulse electric field which determines
the threshold of the decapsulation effect was found. The numerical value of the
found critical field value was in agreement with obtained experimental data. It
was experimentally shown that the observed decapsulation effect was due to the
presence of gold nanorods bound with liposomal capsules, and decapsulation was
not observed in the absence of nanorods.
Keywords: capsules, liposomes,
structure, nanoparticles, gold nanorods, polyelectrolytes, pulse of electric
field.
1.
Freeman
A.I., Mayhew E. Targeted drug delivery. Cancer, 1986, vol. 58, pp.
573–583.
2.
Svenson
S., Robert K. Multifunctional Nanoparticles for Drug Delivery Applications:
Imaging, Targeting, and Delivery Series. Nanostructure Science and
Technology, Springer, 2012, 373p.
3.
Parveen
S., Misra R., Sahoo S.K. Nanoparticles: a boon to drug delivery, therapeutics,
diagnostics and imaging. Nanomedicine: Nanotechnology, Biology and Medicine,
2012, vol. 8, no. 2, pp. 147-166.
4.
Kataokaa
K., Haradaa A., Nagasaki Y. Block copolymer micelles for drug delivery: design,
characterization and biological significance. Advanced Drug Delivery Reviews,
2001, vol. 47, no. 1, pp. 113–131.
5.
Donath
E., Sukhorukov G.B., Caruso F., Devis S.A., Möhwald H. Novel Hollow
Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angew
Chem. Int. Ed. Engl., 1998, vol. 37, 2202 p.
6.
Sukhorukov
G.B., Donath E., Davis S.A., Lichtenfeld A., Caruso F., Popov V.I.,
Möhwald H. Stepwise polyelectrolyte assembly on particle surfaces: A Novel
Approach to Colloid Design. Polym. Adv. Technol., 1998, vol. 9, p. 759.
7.
Radtchenko
I.L., Sukhorukov G.B., Leporatti S., Khomutov G.B., Donath E., Mohwald H.
Assembly of alternated multivalent ion/polyelectrolyte layers on colloidal
particles. Stability of the multilayers and encapsulation of macromolecules
into polyelectrolyte capsules. J. Colloid. Interface Sci., 2000, vol.
230, no. 2, pp. 272-280.
8.
Sukhorukov
G.B., Antipov A., Voigt A., Donath E., Möhwald H. pH-Controlled
Macromolecule Encapsulation in and Release from Polyelectrolyte Multilayer
Nanocapsules. Macromol. Rapid Commun, 2001, vol. 22, pp. 44-46.
9.
Skirtach
A.G., Antipov A.A., Shchukin D.G., Sukhorukov G.B. Remote activation of
capsules containing Ag nanoparticles and IR dye by laser light. Langmuir,
2004, vol. 20, pp. 6988-6992.
10.
Radt
B., Smith T.A., Caruso F. Optically Addressable Nanostructured Capsules. Adv.
Mater, 2004, vol. 16, pp. 2184-2189.
11.
Lu Z.,
Prouty M.D., Guo Z.., Golub V.O., Kumar C.S.S.R., Lvov Y.M. Magnetic switch of
permeability for polyelectrolyte microcapsules embedded with Co, Au
nanoparticles. Langmuir, 2005, vol. 21, pp. 2042-2050.
12.
Gorin
D.A., Shchukin D.G., Mikhailov A.I., Kohler K., Sergeev S.A., Portnov S.A.,
Taranov I.V., Kislov V.V., Sukhorukov G.B. Effect of Microwave Radiation on
Polymer Microcapsules Containing Inorganic Nanoparticles. Technical Physics
Letters, 2006, vol. 32, no. 1, pp. 70-72.
13.
Gorin
D.A., Shchukin D.G., Koksharov Yu.A., Portnov S.A., Köhler K., Taranov
I.V., Kislov V.V., Khomutov G.B., Möhwald H., Sukhorukov G.B. Effect of
microwave irradiation on composite iron oxide nanoparticle/polymer
microcapsules. Progress in Biomedical Optics and Imaging. 2007. V. 6536. P.
653604.
14.
Yu. V.
Gulyaev, V. A. Cherepenin, V. A. Vdovin, I. V. Taranov, G. B. Sukhorukov, D. A.
Gorin,and G. B. Khomutov. Pulsed Electric Field, Induced Remote
Decapsulation of Nanocomposite Liposomes with Implanted Conducting
Nanoparticles. Journal of Communications Technology and Electronics, 2015,
Vol. 60, No. 11, pp. 1286–1290. DOI: 10.1134/S1064226915110042.
15.
Yu.V.
Gulyaev, V.A. Cherepenin, I.V. Taranov, V.A. Vdovin, G.B. Sukhorukov, D.A.
Gorin, G.B. Khomutov. Microwave pulse remote activation of polyelectrolyte
nanocomposite microcapsules. Zhurnal Radioelektroniki - Journal of Radio
Electronics, 2014, No. 12. Available at
http://jre.cplire.ru/jre/dec14/25/text.pdf.
16.
Schwendener
R.A. Liposomes in biology and medicine. Adv. Exp. Med. Biol., 2007, vol.
620, pp. 117-28.
17.
Lasic
D.D. Liposomes: from physics to applications. Elsevier, Amsterdam, New
York, 1993, 575 p.
18.
Amstad E., Kohlbrecher J., Muller E., Schweizer T., Textor M., and
Reimhult E. Triggered Release from Liposomes through Magnetic Actuation of Iron
Oxide Nanoparticle Containing Membranes. Nano Letters, 2011. V.11,
P.1664- 1670.
19. D. A. Gorin, D. G.
Shchukin, A. I. Mikhailov, K. Köhler, S. A. Sergeev, S. A. Portnov, I. V.
Taranov, V. V. Kislov, and G. B. Sukhorukov. Effect of Microwave Radiation on
Polymer Microcapsules Containing Inorganic Nanoparticles Technical Physics
Letters, 2006, Vol. 32, No. 1, pp. 70–72.
20. Gubin S.P., Gulyaev Yu.V.,
Khomutov G.B., V V Kislov, V V Kolesov, E S Soldatov, K S Sulaimankulov and A S
Trifonov. Molecular clusters as building blocks for nanoelectronics: the first
demonstration of a cluster single-electron tunneling transistor at room
temperature Nanotechnology. 2002, V.13. ¹2. P.185.
21. V. V. Kislov, V. V.
Kolesov and I. V. Taranov. Electron transport through molecular nanocluster. Radiotekhnika i
Elektronika. 2002.V.47.¹ 11. P.1385.
22. Kislov V., Medvedev B., Gulyaev Yu., I.
Taranov and V. Kashin. Organized superstructures at nanoscale and new
functional nanomaterials.
International
Journal of Nanoscience. 2007. V. 6.
¹ 5. P. 373.
23. Gupta A.K.,
Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for
biomedical applications. Biomaterials. 2005. V.26. ¹18. P.3995-4021.
24. G. A.
Koning, A. M. M. Eggermont, L. H. Lindner, T. L. M. ten Hagen. Hyperthermia and
Thermosensitive Liposomes for Improved Delivery of Chemotherapeutic Drugs to
Solid Tumors. Pharmaceutical Research. 2010. V.27. ¹8. P.1750.
25. Artemyev M., Kisiel D., Abmiotko S. M. N. Antipina, G. B. Khomutov,
V.V. Kislov, A.A. Rakhnyanskaya. Self-Organized, Highly Luminescent CdSe
Nanorod-DNA Complexes. Journal American Chemical Society. 2004. V. 126. ¹ 34. P. 10594.
26. Yu.V.
Gulyaev, V.A. Cherepenin, V.A. Vdovin, I.V. Taranov, V.V. Faykin, V.I.
Tyukavin, V.P. Kim, Yu.A. Koksharov, P.A. Kormakova, K.V. Potapenkov, A.A.
Rakhnyanskaya, A.V., Sybachin, E.G. Yaroslavova, A.A.Yaroslavov3 G.B. Khomutov.
External pulsed electric field remote activation of nanocomposite microcapsules
formed from the lipids, polymers and conductive nanoparticles. Zhurnal
Radioelektroniki - Journal of Radio Electronics, 2014, No. 12. Available at
http://jre.cplire.ru/jre/nov14/9/text.pdf.
27. Yu. V. Gulyaev, V. A.
Cherepenin, V. A. Vdovin, I. V. Taranov, A. A. Yaroslavov, V. P. Kim, and G. B.
Khomutov. Pulsed Electric Field, Induced Remote Decapsulation of
Nanocomposite Liposomes with Implanted Conducting Nanoparticles. Journal of
Communications Technology and Electronics, 2015, Vol. 60, No. 10,
pp. 1097–1108. DOI: 10.1134/S1064226915100034.
28. Schoenbach K.H., Beebe S.
J., Buescher E. S. Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics. 2001, V.22. ¹6. P.440-448.
29. L. D.
Landau and E. M. Livshits, Electrodynamics of Continuous Media (Fizmatlit,
Moscow, 2003; Pergamon, Oxford, 1984).
30. V. P. Kim,
A. V. Ermakov, E. G. Glukhovskoy, A. A. Rakhnyanskaya, Yu. V. Gulyaev, V. A. Cherepenin,
I. V. Taranov, P. A. Kormakova, K. V. Potapenkov, N. N. Usmanov, A. M. Saletsky,
Yu. A. Koksharov, and G. B. Khomutov. Planar Nanosystems on the Basis of
Complexes Formed by Amphiphilic Polyamine, Magnetite Nanoparticles, and DNA
Molecules Nanotechnologies in Russia, 2014, Vol. 9, N. 5–6, pp. 280–287.