"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 11, 2019

contents of issue      DOI  10.30898/1684-1719.2019.11.15    full text in Russian (pdf)  

UDC 537.9

AlN Nanostructured Piezoelectric Films obtained by Reactive RF Magnetron Sputtering

 

A. F. Belyanin 1, À. S. Bagdassaryan 2,3, S. À. Nalimov 1, Å. R. Pavlyukova 4

1 Central Research Technological Institute “Technomash”, 4, Ivan Franko Str., Moscow 121108, Russia

2 Scientific Engineering Center “Technological developments of telecommunication and radio frequency identification”, JSC, 1 (4), Sukharevskaya Sq., Moscow, 127051, Russia

3 Krivosheyev Institute of Radio, 16, Kazakova Str., Moscow 105064, Russia

4 Moscow Institute of Physics and Technology (State University), 9, Institutskiy lane, Dolgoprudny, Moscow Region, 141701, Russia

 

The paper is received on November 11, 2019

 

Abstract. The conditions for obtaining the textured AlN films on substrates of amorphous and crystalline materials by the method of reactive RF magnetron sputtering of an Al target in an atmosphere of argon and nitrogen mixture are presented. By electron microscopy, X-ray diffractometry, energy dispersive spectroscopy, and Raman spectroscopy it is demonstrated the influence of the manufacturing conditions (composition and pressure of the gas mixture, temperature and material of immovable and moving substrates) on the growth rate and structure (crystallinity degree, size and orientation of crystallites, lattice parameters) of AlN films. The relationship between the film structure and the position of the fixed substrates relative to the target-sputtering region is demonstrated. It is discovered that AlN films consist of crystalline and amorphous phases, while the crystallites have the form of fibers, and the amorphous phase occupies the gap between the fibers. The crystallites of AlN films, regardless of the substrate material, were axially textured along the crystallographic direction <0001>. Under the certain parameters, at sapphire substrates there was a unification of the fibers making up the film into wafers with the formation of a limited texture. The crystallite size of AlN films was 25–65 nm and did not depend on the degree of crystallinity. The films having a fibrous or plate structure demonstrated the piezoelectric properties. The influence of the piezoelectric AlN film structure on the parameters of SAW devices is researched. The possibility of the piezoelectric efficiency control for AlN films through the Raman spectra is demonstrated.

Keywords: aluminum nitride films, magnetron sputtering, piezoelectric materials, surface acoustic wave devices, Raman spectroscopy.

References

1. Belyanin À.F., Nalimov S.A., Luchnikov A.P., Bagdasaryan A.S. Properties of planar structures based on policluster films of diamond and AlN. IOP Conference Series: Materials Science and Engineering 6. Ser. "6th International Conference: Modern Technologies for Non-Destructive Testing". 2018. P.012041. DOI: 10.1088/1757-899X/289/1/012041..

2. Iqbal A., Mohd-Yasin F. Reactive Sputtering of Aluminum Nitride (002) Thin Films for Piezoelectric Applications: A Review.  Sensors. 2018. Vol.8. No.6. P.1797.  DOI:10.3390/s18061797

3. Spitsyn B.V., Blaut–Blachev A.N., Bouilov L.L., Zhirnov V.V., Bormatova L.V., Givargizov E.I., Belyanin A.F., Pashchenko P.V. Field emitters based on Si tips with AlN coating.  Diamond and Related Materials. 1998. Vol.7. No.2–5. P.692–694.

4. Belyanin À.F., Borisov V.V. Bagdasaryan A.S. Nanostructured carbon materials in emission electronics. Rossiyskii tehnologicheskiy zhurnal - Russian Technological Journal. 2017. Vol.5. No.3. P. 22–40. (In Russian)

5. Yarar E., Hrkac V., Zamponi C., Piorra A., Kienle L., Quandt E. Low temperature aluminum nitride thin films for sensory applications.  AIP Advances. 2016. Vol.6. No.7. P.075115; DOI: 10.1063/1.4959895

6. Belyanin A.F., Samoylovich M.I., Jitkovsky V.D., Pashchenko P.V., Timofeev M.A., Kovalskij K.A., Kleshcheva S.M., Borisov V.V., Petukhov K.Yu. Layer cold cathodes.  Nano- i mikrosistemnaya tekhnika - Nano- and microsystems technology. 2005. No.8. P. 39–48. (In Russian)

7. Besleaga C., Dumitru V., Trinca L.M., Popa A-C., Negrila C-C., Kołodziejczyk L., Luculescu C-R., Ionescu G-C., Ripeanu R-G., Vladescu A., Stan G.E. Mechanical, corrosion and biological properties of room-temperature sputtered aluminum nitride films with dissimilar nanostructure.  Nanomaterials. 2017. No.7. P. 394; DOI:  10.3390/nano7110394

8. Bo L., Xiao C., Hualin C., Ali Mohammad M., Xiangguang T., Luqi T., Yi Y., Tianling R. Surface acoustic wave devices for sensor applications.  Journal of Semiconductors. 2016. Vol.37. No.2. DOI: 10.1088/1674-4926/37/2/021001

9. Wang C.C., Chiu M.C., Shiao M.H., Shieua F.S. Characterization of AlN thin films prepared by unbalanced magnetron sputtering. Journal of the Electrochemical Society. 2004. Vol.151. No.10. P.252–256.

10. Kumari N., Singh A.K., Barhai P.K. Study of Properties of AlN Thin films deposited by reactive magnetron sputtering.  International Journal of Thin Films Science and Technology. 2014. Vol.3. No.2. P.43–49. DOI 10.12785/ijtfst/030203

11. Samoylovich M.I., Belyanin A.F. AlN nanostructured films: production, structure and application in electronic technology. Injenernaya fizika - Engineering Physics. 2006. No.5. P.51–56. (In Russian)

12. Matsunami N., Venkatachalam S., Tazawa M., Kakiuchida H., Sataka M. Ion beam characterization of RF-sputter deposited AlN lms on Si(111).  Nuclear instruments and methods in physics research. Section B: Beam interections with materials and atom. 2008. Vol. 266. No.8. P.1522–1526.

13. Pat S., Kokkokoglu M. Characterization of deposited AlN lms at various nitrogen concentrations by RF reactive sputtering.  Optoelectronics and Advanced Materials Rapid Communications. 2010. Vol. 4. No.6. P. 855–858.

14. Shih W.-C., Zoh Z.-X. Fabrication of AlN lms by magnetron sputtering for surface acoustic wave applicatrions.  Ferroelectrics. 2014. Vol.459. No.1. P.52-62.

15. Khan S., Mehmood M., Shahid M., Alam M., Mahmood A., Shah A., Aziz U., Raza Q., Ahmed I. Texture of the nano-crystalline AlN thin lms and the growth conditions in DC magnetron sputtering.  Progress in Natural Science. 2015. Vol.25.  No.4. P. 282–290.

16. Chen L.-X., Liu H., Liu S., Li C.-M., An K., Hua C.-Y., Liu J.-L., Wei J.-J., Hei L.-F., Lv F.-X., Wang Y.-C. Growth of high quality AlN lms on CVD diamond by RF reactive magnetron sputtering. Applied Surface Science. 2018. Vol.431. P.152–159.

17. Ma D.L., Liu H.Y., Deng Q.Y., Huang N., Leng Y.X., Yang W.M., Silins K. Optimal target sputtering mode for aluminum nitride thin lms deposition by high power pulsed magnetron sputtering.  Vacuum. 2019. Vol. 160. P. 410–417.

18. Belyanin A.F., Bagdasaryan A.S. Layered structure on the basis of films of policluster diamond and AlN for the devices on surface acoustic waves. Uspekhi sovremennoi radioelektroniki - Achievements of Modern Radioelectronics. 2017. No.3. P.30–38. (In Russian.)

19. Wang J., Chen D., Xu Y., Liu Q., Zhang L. Influence of the crystal texture on Raman spectroscopy of the AlN lms prepared by puls laser deposition.  Journal of Spectroscopy. 2013. Vol. 2013. Article ID 103602. http://dx.doi.org/10.1155/2013/103602

20. Broas M., Sippola P., Sajavaara T., Vuorinen V., Perros A.P., Lipsanen H., Paulasto-Kröckel M. Structural and chemical analysis of annealed plasma-enhanced atomic layer deposition aluminum nitride films.  Journal of Vacuum Science & Technology A. 2016. Vol.34. P.041506.  DOI: 10.1116/1.4953029

21. Kar J.P., Bose G., Tuli S. Influence of rapid thermal annealing on morphological and electrical properties of RF sputtered AlN films.  Materials Science in Semiconductor Processing. 2005. Vol. 8. No.6. P. 646–651.

22. Oliveira C., Otani C., Maciel H.S., Massi M., Noda L.K., Temperini M.L.A. Raman active E2 modes in aluminum nitride films.  Journal of Materials Science: Materials in Electronics. 2001. Vol.12. P.259–262.

23. Liu L., Liu B., Edgara J.H., Rajasingam S., Kuball M. Raman characterization and stress analysis of AlN grown on SiC by sublimation.  Journal of Applied Physics. 2002. Vol.92. No.9. P.5183–5188.

24. Jagannadham K., Sharma A. K., Wei Q., Kalyanraman R., Narayan J. Structural characteristics of AlN lms deposited by pulsed laser deposition and reactive magnetron sputtering: A comparative study. Journal of Vacuum Science & Technology A. 1998. Vol.16. No.5. P.2804–2815.

25. Fillipidis L., Siegle H., Hoffmann A., Thomsen C., Karch K., Bechstegt F. Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride.  Physica Status Solidi (b). 1996. Vol.190. P. 621–627.

26. Vispute R.D., Narayan J., Wu H., Jagannadham K. Epitaxial growth of AIN thin films on silicon (111) substrates by pulsed laser deposition.  Journal of Applied Physics. 1995. Vol.77. No.9. P.4724–4728.

27. Alizadeh M., Ganesh V., Ameera A.N., Goh B.T., Shuhaimi A., Rahman S.A., Mehdipour H. Plasma-assisted hot filament chemical vapor deposition of AlN thin lms on ZnO buffer layer: toward highly C-axis-oriented, uniform, insulative films. Applied Physics A: Materials Science & Processing. 2014. Vol.117. No.4. P.2217–2224.

28. Khan S., Mehmood M., Sadiq G., Ahmed I. Influence of the nitrogen fraction on AlN thin lm deposited by cathodic arc ion.  Materials Science in Semiconductor Processing. 2015. Vol.29. P.193–200.

29. Xu J., Thakur J.S., Hu G., Wang Q., Danylyuk Y., Ying H., Auner G.W. Angular dependence of surface acoustic wave characteristics in AlN thin lms on a-plane sapphire substrates.  Applied Physics A. 2006. Vol.83. P.411–415.

30. Lughi V., Clarke D.R. Defect and stress characterization of AlN lms by Raman spectroscopy.  Applied Physics Letters. 2006. Vol.89. No.24. Article ID 241911.

31. Kuball M., Hayes J.M., Prins A.D., Van Uden N.W.A., Dunstan d.J. Raman scattering studies on single-crystalline bulk AlN under high pressures. Applied Physics Letters. 2001. Vol.78. No.6. P.724–726.

 

For citation:

Belyanin A.F., Bagdassaryan A.S., Nalimov S.A., Pavlyukova E.R. AlN Nanostructured Piezoelectric Films obtained by Reactive RF Magnetron Sputtering.  Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 11. Available at http://jre.cplire.ru/jre/nov19/15/text.pdf

DOI  10.30898/1684-1719.2019.11.15