"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 11, 2019

contents of issue      DOI  10.30898/1684-1719.2019.11.6    full text in Russian (pdf)  

UDC 004.77

Enhancement of conduction electron reflection specularity in gold films coated with Langmuir-Blodgett nanolayers


L. A. Galchenkov, I. I. Pyataikin

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow, 125009, Russia


The paper is received on October 30, 2019


Abstract. The effect of organic nanometer-thick coatings on the size effect in gold films is studied. It is found that coating the surface of a gold film with Langmuir-Blodgett (LB) multilayers on the basis of surface-active derivatives of dimethyltetrathiafulvalene (DMTTF) and tetracyanoquinodimethane (TCNQ) increases the specularity of reflection of conduction electrons from the surface covered with the LB nanolayers. This enhancement of the specularity manifests itself as a decrease of residual resistivity of the film at liquid helium temperatures. The found ability to reduce the residual resistance of the film, allowed us to identify Kondo-like features in its electronic transport properties, which had been "buried" under the residual resistance and not manifested themselves before the LB coating was applied. In the article, it is discussed how the found effect can affect such important parameters, characterizing the interaction of microwaves and the gold films covered with considered LB overlayers, as reflection, transmission, and absorption coefficients.

Key words: Langmuir-Blodgett films, dimethyltetrathiafulvalene (DMTTF), tetracyanoquinodimethane (TCNQ), size effect, specularity of reflection of conduction electrons, Kondo effect, microwave reflection coefficient, microwave absorption coefficient.


1.          Larson D.C. Size-Dependent Electrical Conduction in Thin Metal Films and Wires. In Physics of Thin Films: Advances in Research and Development., Ed. by Francombe M.H., Hoffman R.W. New York and London. Academic Press. 1971, Vol.6, pp.81-149. DOI: 10.1016/B978-0-12-533006-0.50009-8

2.          Altshuler B.L., Aronov A.G., Gershenson M.E., Sharvin Yu.V. Quantum effects in disordered metal films. In Soviet scientific reviews. Section A, Physics Reviews, Ed. by Khalatnikov I.M.  Chur, Switzerland. Harwood Academic. 1987. Vol. 9. P.223-353.

3.          Bergmann G. Weak localization and its applications as an experimental tool. International Journal of Modern Physics B, 2010, Vol.24, No.12 &13. P.2015-2052. DOI: 10.1142/S021797921006468X

4.          Fleischmann M., Hendra P.J., McQuillan A.J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters. 1974. Vol.26, No.2, P.163-166. DOI: 10.1016/0009-2614(74)85388-1

5.          Emel’yanov V.I., Koroteev N.I. Giant Raman scattering of light by molecules adsorbed on the surface of a metal. Soviet Physics Uspekhi. 1981. Vol.24, No.10, P.864-873. DOI: 10.1070/PU1981v024n10ABEH004812

6.        Aktsipetrov O.A. Gigantic nonlinear optical phenomena on metal surfaces. Sorosovskiy Obrazovatel’nyii Zhurnal – Soros Educational Journal. 2001. Vol.7. No.7. P.109-116. Available at http://files-3.nehudlit.ru/journals/001/sorosovskij-obrazovatelnij-journal-2001-07.djvu (In Russian)

7.          Fuchs K. The conductivity of thin metallic films according to the electron theory of metals. Mathematical Proceedings of the Cambridge Philosophical Society. 1938. Vol.34, No.1, P.100-108. DOI: 10.1017/S0305004100019952

8.          Dingle R.B. The electrical conductivity of thin wires. Proceedings of the Royal Society A. 1950. Vol.201. No.1067. P.545-560. DOI: 10.1098/rspa.1950.0077

9.          Sondheimer E.H. The mean free path of electrons in metals. Advances in Physics, 1952. Vol.1. No.1. P.1-42. DOI: 10.1080/00018735200101151

10.     Larson D.C., Boiko B.T. Electrical resistivity of thin epitaxially grown silver films. Appl. Phys. Lett. 1964. Vol.5. No. 8. P.155-156. DOI: 10.1063/1.1754095

11.     Lukas M.S.P. Surface scattering of conduction electrons in gold films. Appl. Phys. Lett. 1964. Vol.4. No.4. P.73-74. DOI: 10.1063/1.1753968

12.     Babichev A.P., Babushkina N.A., Bratkovskii A.M. et al. Fizicheskie velichiny: Spravochnik. [Physical Quantities: a Handbook], Ed. by Grigor’ev I.S., Meylikhov E.Z. Moscow. Energoatomizdat Publ., 1991. 1232 p. (In Russian)

13.     Abrikosov A.A. Fundamentals of the Theory of Metals. Amsterdam. North-Holland. 1988. 630 p.

14.     Horiuti J., Toya T. Chemisorbed Hydrogen. In Solid State Surface Science, Ed. by Green M. New York. Marcel Dekker. 1969. Vol.1, p. 1.

15.     Wißmann P. The electrical resistivity of pure and gas covered metal films. In Surface Physics. Springer Tracts in Modern Physics, Ed. by Höhler G., Berlin, Heidelberg. Springer. 1975, Vol.77. P.1-96.

16.     Mansurov G.N., Petrii O.A. Elektrokhimiya tonkikh metallicheskikh plenok. [Electrochemistry of thin metal films]. Moscow. Moscow District State University Publ. 2011. 351 p. (In Russian)

17.     Kistenmacher T.J., Phillips T.E., Cowan D.O., Ferraris J.P., Bloch A.N.,  Poehler T.O. Crystal structure and diffuse X-ray scattering of the 1.3:2 salt of 4,4',5,5'-tetramethyl-D2,2-bis-1,3-dithiole [TMTTF] and 7,7,8,8-tetracyano-p-quinodimethane [TCNQ], a nonstoichiometric quasi one-dimensional organic conductor. Acta Cryst. B. 1976. Vol.32. No.2, P.539-547. DOI: 10.1107/S0567740876003385

18.     Rustichelli F., Dante S., Mariani P., Myagkov I.V., Troitsky V.I. Surface potential studies of monolayers of surfactant donor and acceptor molecules. Thin Solid Films. 1994. Vol.242. No.1–2. P.267-272. DOI: 10.1016/0040-6090(94)90543-6

19.     Kaplan A.E. On the reflectivity of metallic films at microwave and radio frequencies. Radio Engineering and Electronic Physics. 1964. Vol.9. No.10. P.1476-1481. Available at http://psi.ece.jhu.edu/kaplan1/PUBL/AEK.pubs/RUSS/3.pdf

20.     Kaplan A.E. Metallic nanolayers: a sub-visible wonderland of optical properties. Journal of the Optical Society of America B. 2018. Vol.35. No.6. P.1328-1340. DOI: 10.1364/JOSAB.35.001328

21.     Andreev V.G., Vdovin V.A., Voronov P.S. An experimental study of millimeter wave absorption in thin metal films. Technical Physics Letters. 2003. Vol.29. No.11. P.953-955. DOI: 10.1134/1.1631376

22.     Andreev V.G., Vdovin V.A., Voronov P.S. Study of optical coefficients of thin metal films in millimeter wavelength range. Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya - Bulletin of the Russian Academy of Sciences: Physics, 2003. Vol.67. No.12. P.1766-1769. (In Russian)

23.     Andreev V.G., Vdovin V.A., Pronin S.M., Khorin I.A. Measurements of the optical coefficients of nanometer-thick metallic films at frequency of 10 GHz. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2017. No.11. Available at http://jre.cplire.ru/jre/nov17/17/text.pdf (In Russian)

24.     Echternach P.M., Gershenson M.E., Bozler H.M. Evidence of interference between electron-phonon and electron-impurity scattering on the conductivity of thin metal films. Phys. Rev. B. 1993. Vol.47. No.20. P.13659-13663. DOI: 10.1103/PhysRevB.47.13659


For citation:

Galchenkov L.A., Pyataikin I.I. Enhancement of conduction electron reflection specularity in gold films coated with Langmuir-Blodgett nanolayers. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 11. Available at http://jre.cplire.ru/jre/nov19/6/text.pdf

DOI  10.30898/1684-1719.2019.11.6