Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 11

Full text in Russian (pdf)

Russian page


DOI  https://doi.org/10.30898/1684-1719.2020.11.2

UDC (621.371.332.3: 621.396.96): 537.876.23


Modern devices, antennas and reflectors with nonreciprocal properties (review)


A. N. Sychev, N. D. Malyutin

Tomsk State University of Control Systems and Radioelectronics (TU-SUR), Lenin prosp., 40, Tomsk 634050, Russia

The paper is received on October 5, 2020


Abstract. The review deals with microwave antennas, devices (including reflectors), materials and media with nonreciprocal properties, which, due to their uniqueness and promising application, have become the topic of a large number of scientific studies and publications. It is noted that amplitude nonreciprocity can be realized not only with the help of magnetized ferrites and semiconductor amplifiers, but also based on parametric and nonlinear structures using space-time modulation. Therefore, polarization nonreciprocity can also be achieved on magnet-free components, including varactors, and other parametric elements. When analyzing reciprocal reflectors made both on "thin" surface structures and on bulk waveguides, it is appropriate to consider reciprocal cross-polarizing (depolarizing) "invisible"-reflectors, converting the initial polarization of the incident wave into the orthogonal polarization of the reflected wave, which can be built with  using only reciprocal passive components without the use of non-reciprocal ones (ferrite circulators, gyrators, etc.).  The combination of polarization and nonreciprocal properties in radar reflectors, RFID tags, etc., is an additional degree of freedom in the design of new generation electronic systems.

Key words: non-reciprocal reflection, polarization nonreciprocity, space-time modulation, cross-polarizing reflectors, RFID tags.


1.     Sazonov D. M., Gridin A. M., Mishustin B. A. Microwave Devices. M: Vysshaya Shkola, 1981. 259 P.

2.     Sukhanyuk M., Shoshin E. L. Nonreciprocal horn reflector. Proceedings of the 9th International Scientific and Practical Conference of Students, Post-graduates Modern Techniques and Technologies. 2003. MTT 2003, Tomsk, 2003. P. 71-73. https://10.1109/SPCMTT.2003.1438135.

3.     Patent RU2398318. Osipov M.V., Khlusov V.A. Radiolokacionnyi otragatel [Radar reflector]. The applicant and patent holder: CJSC "Scientific and Production Company Micran". Applied 12.08.2009. Published 27.08.2010. Bul. No. 24. (In Russian).

4.     Patent RU2398317. Dotsenko V.V., Osipov M.V., Khlusov V.A. Radiolocacionnyi otragatel s upravlyaemymi polarizacionnymi svoystvami [Radar reflector with controlled polarization properties The applicant and patent holder: CJSC "Scientific and Production Company Micran". Applied 27.08.2009. Published 27.08.2010. Bul. No. 24. (In Russian)

5.     Taravati S., Kishk A.A. Space-time modulation: Principles and applications. IEEE Microwave Magazine. 2020. Vol. 21. No. 4. P. 30-56. April 2020. DOI: https://doi.org/10.1109/MMM.2019.2963606

6.     Taravati S., Chamanara N., Caloz C. Nonreciprocal electromagnetic scattering from a periodically space-time modulated slab and application to a quasisonic isolator. Phys. Rev. B, Condens. Matter. 2017. Vol. 96. No. 16. P. 165,144, Oct. 2017. https://doi.org/10.1103/Phys-RevB.96.165144.

7.     Qin S., Xu Q., Wang Y.E. Nonreciprocal components with distributedly modulated capacitors. IEEE Trans. Microw. Theory Techn. 2014. Vol. 62. No. 10. P. 2260–2272.

8.     Wu Z., Grbic A. Serrodyne frequency translation using time-modulated metasurfaces. [On-line]: hhttps://www.researchgate.net/publication/333161134.

9.      Li J., Zhu X., Shen C., Peng X., Cummer S.A. Transfer matrix method for the analysis of space-time-modulated media and systems. Physical Review B.  2019. Vol.100. P. 144311.  https://doi.org/10.1103/PhysRevB.100.144311.

10.  Nagulu A., Reiskarimian N., Krishnaswamy H.. Non-reciprocal electronics based on temporal modulation. Nat Electron. 2020. No. 3. P. 241–250. [Online]: https://doi.org/10.1038/s41928-020-0400-5.

11.  Ramaccia D., Sounas D.L., Alu A., Bilotti F., Toscano A. Nonreciprocity in anten­na radiation induced by space-time varying metamaterial cloaks. IEEE Antennas and Wireless Propagation Letters. 2018. Vol. 17. No. 11. P. 1968–1972. https://doi.org/10.1109/LAWP.2018.2870688.

12.  Zang W.J., Wang X.T., lvarez-Melcon A.A., Gomez-Diaz J.S. Nonreciprocal Yagi-Uda filtering antennas. https://doi.org/10.1109/LAWP.2019.2947847 [Online]: https://arxiv.org/abs/1906.06418

13.  Guo X., Ding Y., Duan Y., Ni X. Nonreciprocal metasurface with space-time phase modulation”. [Online] www.nature.com/lsa.

14.  Al-Nuaimi M.K.T., Hong W., Mahmoud A. Design of cross polarization conversion metasurface using dumbbell-like unit cell. 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi'an. 2017. P. 1–3, doi: 10.1109/APCAP.2017.8420433.

15.  Lin B., Wang B., Meng W., Da X., Li W., Fang Y., Zhu Z. Dual-band high-efficiency polarization converter using an anisotropic metasurface. Journal of Applied Physics. 2016. Vol. 119. P. 183103. [Online]: https://doi.org/10.1063/1.4948957.

16.  Khan M.I., Fraz Q., Tahir F.A. Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle.  Journal of Applied Physics. 2017. Vol.121. P. 045103.  [On-line] https://doi.org/10.1063/1.4974849.

17.  Khan M.I., Khalid Z., Tahir F.A. Linear and circular-polarization conversion in X-band using anisotropic metasurface.  Scientific Reports. 2019. No.9. P. 4552. https://doi.org/10.1038/s41598-019-40793-2

[Online]: https://www.nature.com/articles/s41598-019-40793-2 

18.  Visentin T., Michev R., Hasch J., Zwick T. Cross-polarized planar reflector for polarimetric radar calibration at 77 GHz. Conf. 2018 German Microwave Conf. (GeMiC). https://doi.org/10.23919/GEMIC.2018.8335035

19.  Vena A., Perret E., Tedjni S. A Depolarizing chipless RFID tag for robust detection and its FCC compliant UWB reading system. IEEE Trans. Microw. Theory Techn. 2013. Vol. 61. No.8. P. 2982-2994.  https://doi.org/10.1109/TMTT.2013.2267748.

20.  Khaledian S., Farzami F., Smida B., Erricolo D. Two-way backscatter communication tag using a reflection amplifier. IEEE Microw. and Wireless Components Letters. 2019. Vol. 29. No. 6. P. 421-423.  https://doi.org/10.1109/LMWC.2019.2912299

21.  Zhao X., Wu K., Chen C., Bifano T. G., Anderson S. W., Zhang X. Nonreciprocal magnetic coupling using nonlinear meta-atoms. Adv. Sci. 2020. P. 2001443.  https://doi.org/10.1002/advs.202001443.


For citation:

Sychev A.N., Malyutin N.D. Modern devices, antennas and reflectors with nonreciprocal properties (review). Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.11. https://doi.org/10.30898/1684-1719.2020.11.2 (In Russian)