Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. 11
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.11.16

 

SIMULATION OF THE IMPACT OF THE CELL INTERFERENCE
ON THE THZ GAS ABSORPTION SPECTRUM
MEASHURED BY NONSTATIONAR SPECTROSCOPY METHODs

 

A.V. Semenova 1,2, A.A. Yablokov 1, V.A. Anfertev 1,2, T.D. Knyazeva 2

 

1 IPMRAS, 603087, Russia, Afonino, Academicheskaya Str., 7

2 Lobachevsky State University of Nizhny Novgorod

603950, Russia, Nizhny Novgorod, Gagarin Ave., 23)

 

The paper was received December 7, 2022.

 

Abstract. Cell is the important part of the terahertz (THz) spectrometer designed to study the chemical composition of multicomponent gas mixtures, since it is used for supporting the optimal pressure of the gaseous sample. However, the reflection of electromagnetic waves from the cell windows leads to standing-wave interference, which can distort the measured spectrum. Mathematical modeling of the impact of the interference on the measured spectrum was carried out in the paper. The cell was treated as a Fabry-Perot cavity with infinite flat dielectric mirrors. Diffraction of electromagnetic waves, as well as the frequency dependences of the source power and the detector sensitivity, was taken out of the scope of the considered model. The two effects of the interference were described. The interference not only determined the slow frequency dependence of the cell transmission spectrum, but also affected the profile of the gas absorption lines reconstructed from the cell spectrum in accordance with the Bouguer-Lambert-Beer law. Both the processing of the measured spectrum and the setup calibration required for accurate quantitative measurements could be complicated by the effects. However, methods of modulation and non-stationary spectroscopy enabled to eliminate the first effect, they were possibly ineffective to eliminate the second one. Presumably, the detected distortion of the contour of the absorption lines was caused by a shift in the interference pattern and, accordingly, a change in the reflection coefficient of the cell due to the anomalous dispersion of the sample. The correlation of the distortions with the derivatives of the transmission spectrum of the empty cell was revealed. The obtained results could be used to develop algorithms for calibrating the measuring setup and processing experimental data.

Keywords: absorption spectroscopy, abnormal dispersion, standing wave interference, THz.

Financing: This research was funded by the Russian Science Foundation, grant No. 21-19-00357.

Corresponding author: Semenova Anna Vladimirovna, semenanna@yahoo.com

 

References

1. Sold S., Mummaneni B.C., Michenfelder N.C., Peng Y., Powell A.K., Unterreiner A.-N. et al. Experimental and Theoretical Study of the Ultrafast Dynamics of a Ni2Dy2-Compond in DMF After UV/Vis Photoexcitation. ChemistryOpen. 2022. V.11. e202100153. http://doi.org/10.1002/open.202100153

2. Pathade S.S., Adole V.A., Jagdale B.S., Pawar Th.B. Molecular Structure, Electronic, Chemical and Spectroscopic (UV-Visible and IR) Studies of 5-(4-Chlorophenyl)-3-(3,4-dimethoxyphenyl)-1-phenyl-4,5-dihydro-1H-pyrazole: Combined DFT and Experimental Exploration. Mat. Sci. Res. India. 2020. V.17. P.27-40. http://doi.org/10.13005/msri.17.special-issue1.05

3. Townes C.H., Schawlow A.L. Microwave Spectroscopy. McGraw-Hill. 1955. 698 p.

4. Najib H. Experimental rovibrational constants and equilibrium structure of phosphorus trifluoride. J. Mol. Spectrosc. 2014. V.305. P.17-21. https://doi.org/10.1016/j.jms.2014.09.008

5. Wu Q.Y., Tan T.L. Improved ground state and v12 = 1 state rovibrational constants of formaldoxime (CH2NOH). J. Mol. Spectrosc. 2020. V.370. 111290. https://doi.org/10.1016/j.jms.2020.111290

6. Hacar A., Alves J., Burkert A., and Goldsmith P. Opacity broadening and interpretation of suprathermal CO linewidths: Macroscopic turbulence and tangled molecular clouds. A&A. 2016. V.591. A104. https://doi.org/10.1051/0004-6361/201527319

7. Markelz A., Whitmire S., Hillebrecht J. and Birge R. THz time domain spectroscopy of biomolecular conformational modes. Phys. Med. Biol. 2002. V.47. P.3797-3805. https://doi.org/10.1088/0031-9155/47/21/318

8. Sizov I., Rahman M., Gelmont B., Norton M.L., Globus T. Sub-THz spectroscopic characterization of vibrational modes in artificially designed DNA monocrystal. Chem.Phys. 2013. V.425. P.121-125. https://doi.org/10.1016/j.chemphys.2013.08.015

9. Mancini T., Mosetti R., Marcelli A., Petrarca M., Lupi S., D’Arco A. Terahertz Spectroscopic Analysis in Protein Dynamics: Current Status. Radiation. 2022. V.2. P.100-123. https://doi.org/10.3390/radiation2010008

10. Risby T.H., Solga S.F. Current status of clinical breath analysis. Appl. Phys. B. 2006. V.85. P.421-426. http://doi.org/10.1007/s00340-006-2280-4

11. Selvaraj R., Vasa N.J., Nagendra S.M.S., Mizaikoff B. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules. 2020. V.25. 2227. https://doi.org/10.3390/molecules25092227

12. Tabalina A.S., Anfmov D.R., Fufurin I.L., Golyak I.S. Infrared quantum cascade laser spectroscopy as non-invasive diagnostic tests for human diseases. Proc. of SPIE. 2020. V.11359. 113591J-1

13. Vaks V., Aizenshtadt A., Anfertev V., Chernyaeva M., Domracheva E., Gavrilova K., et al. Analysis of the Thermal Decomposition Products of Pathological and Healthy Tissues in Paranasal Sinuses: A High-Resolution Terahertz Gas Spectroscopy Study. Appl. Sci. 2021. V.11. P.7562. https://doi.org/10.3390/app11167562

14. Vaks V., Anfertev V., Chernyaeva M., Domracheva E., Yablokov A., Maslennikova A., et al. Sensing nitriles with THz spectroscopy of urine vapours from cancers patients subject to chemotherapy. Sci. Rep. 2022. V.12. P.18117. https://doi.org/10.1038/s41598-022-22783-z

15. Kharitonov S.A., Barnes P.J. Exhaled Markers of Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2001. V.163. P.1693-1722. https://doi.org/10.1164/ajrccm.163.7.2009041

16. Du Zh., Zhang Sh., Li J., Gao N., Tong K. Mid-Infrared Tunable Laser-Based Broadband Fingerprint Absorption Spectroscopy for Trace Gas Sensing: A Review. Appl. Sci. 2019. V.9. 338. https://doi.org/10.3390/app9020338

17. Chen Z., Zhang Zh., Zhu R., Xiang Yu., Yang Yu., Harrington P.B. Application of terahertz time-domain spectroscopy combined with chemometrics to quantitative analysis of imidacloprid in rice samples. J Quant Spectrosc Radiat Transf. 2015. V.167. P.1-9. https://doi.org/10.1016/j.jqsrt.2015.07.018

18. Kawase M. Application of Terahertz Waves to Food Science. Food Sci. Technol. Res. 2012. V.18. №5. P.601-609. https://doi.org/10.3136/fstr.18.601

19. Eerdenbrugh B.V., Taylor L.S. Application of mid-IR spectroscopy for the characterization of pharmaceutical systems. Int. J. Pharm. 2013. V.417. P.3-16. https://doi.org/10.1016/j.ijpharm.2010.12.011

20. Biancolillo A., Marini F. Chemometric Methods for Spectroscopy-Based Pharmaceutical Analysis. Front. Chem. 2018. V.6. 576. https://doi.org/10.3389/fchem.2018.00576

21. Cahen C., Sassi M. Temperatures in a turbulent diffusion flame with and without exposure to an electric arc. J. Quant. Spectrosc. Radiat. Transfer. 1993. V.49. №3. P.281-301. https://doi.org/10.1016/0022-4073(93)90090-5

22. Dinç E., Yazan Z. Wavelet Transform-Based UV Spectroscopy for Pharmaceutical Analysis. Front. Chem. 2018. V.6. P.503. https://doi.org/10.3389/fchem.2018.00503

23. Lou M., Swearer D.F., Gottheim S., Phillips D.J., Simmons J.G. Jr., Halas N.J., et al. Quantitative analysis of gas phase molecular constituents using frequency-modulated rotational spectroscopy. Rev. Sci. Instrum. 2019. V.90. P.053110. https://doi.org/10.1063/1.5093912

24. Semenova A.V., Anfertev V.A., Yablokov A.A., Knyazeva T.D. Systematic errors of THz absorption gas spectroscopy due to interference in a multi-pass cell. J. Phys.: Conf. Ser. 2022. V.2172 P.012010. https://doi.org/10.1088/1742-6596/2172/1/012010

 

For citation:

Semenova A.V., Yablokov A.A., Anfertev V.A., Knyazeva T.D. Simulation of the impact of the cell interference on the THz gas absorption spectrum meashured by nonstationar spectroscopy methods. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №11. https://doi.org/10.30898/1684-1719.2022.11.16 (In Russian)