Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №11
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.11.18

 

Heuristic and applied potential of combining microwave humidity-temperature sensing

of soil and photographing in facially differentiated agricultural systems

 

E.P. Novichikhin 1,4, N.F. Khokhlov 1,2, A.G. Bolotov 1,2, I.A. Sidorov 1, A.G. Gudkov 1,

I.O. Porokhov 5, S.V. Chizhikov 1,3

 

1 Bauman Moscow State Technical University, Moscow 105005, Russian Federation

2 RGAU MSHA named after K.A.Timiryazev, Moscow, 127434, Timiryazevskaya st., 49, RF

3 LLC "NPI FIRM "HYPERION" 115201, Moscow, Kashirsky ave., 13, Russian Federation

4 Kotelnikov Institute of Radioengineering and Electronics of RAS, Fryazino Branch,

Fryazino 141190, Moscow Region, Russian Federation Moscow, 11 Mokhovaya str., bldg.7.

5 TSNIRTI named after academician A.I. Berg, 105066, Moscow, Novaya Basmannaya str., 20

 

The paper was received November 20, 2022

 

Abstract. The paper is devoting the discussion of the biocenotic conditions, boundaries and advantages of additional equipment of an airmobile platform (UAV) with a microwave radiometric system for soil moisture and temperature sensing of inhomogeneous arable lands included in the turnover of moraine plain landscapes with photography. The necessity is theoretically justified and an algorithm is given for obtaining and using information on the projective coating of the leaf surface to calculate the corrections of the results of probing soil moisture with a microwave radiometer. Approaches to the rationalization of the survey, methods of statistical analysis of photography data that allow predicting the translocal vector of the dynamics of the weed component of the lands put into circulation are considered. Agro-industrial applications of joint microwave sensing and photographing on plantations of perennial industrial crops are given. The purpose of the work is to discuss the features of the conditions and to show the opportunities and prospects for the agronomic application of the results of combining microwave humidity–temperature sensing of the soil and digital photography in the development of fallow facially differentiated lands planned for the laying of plantations of perennial industrial crops. The following results were obtained. The analysis of the influence of vegetation cover on the results of remote determination of soil moisture using a bipolarization microwave radiometer of the L-band is carried out. A method for correcting radiometric data on soil moisture using additional photography data in the presence of surface vegetation is proposed. A field humidity map obtained as a result of a full-scale experiment with subsequent data processing is presented. The possibility of predictions controlled by agricultural production based on the combination of microwave humidity-temperature sensing of the soil and photographing in facially differentiated agrogeosystems of the repetition of the phytocenotic pattern of root facies heterogeneity is shown. Practical significance. The introduction of the obtained new algorithms for taking into account the shielding effect of vegetation cover on the soil surface during microwave radiometric sensing of the soil surface from a UAV into the technological processes of growing crops ensures the sustainable development of crop production technologies, increasing yields and obtaining additional profits for agricultural enterprises.

Key words: Microwave radiometer, remote sensing, UAV, agrogeosystems, soil moisture, projective covering of the soil surface with leaves.

Financing: the research was carried out at the expense of the grant of the Russian Science Foundation No. 22-19-00063, https://rscf.ru/project/22-19-00063

Corresponding author: Novichikhin Eugeniy Pavlovich, epnov@mail.ru

References

1. Baza dannykh «Flora sosudistykh rastenii Tsentral'noi Rossii». [web]. www.impb.ru. Date of application: 15.11.2022. https://www.impb.ru/eco/show_info.php?id=2148

2. Belov S.G., Beluga G.I., Verba V.S., I.A.Sidorov, Vesnin S.G., Gulyaev YU.V., Gudkov A.G., i dr. vsego 49 avtorov. Informatsionno-izmeritel'nye i upravlyayushchie radioehlektronnye sistemy i kompleksy. [Information-measuring and control radio-electronic systems and complexes]. Moscow, Radiotekhnika Publ. 2020. 490 p. (In Russian)

3. Buzuluk G.N., Sozinov O.V. Methods for accounting for the projective cover of plants using photographic sites. Izvestiya Samarskogo nauchnogo tsentra rossiiskoi akademii nauk. [Proceedings of the Samara Scientific Center of the Russian Academy of Sciences]. 2014. V.16. №5(5). P.1644-1649. (In Russian).

4. Gulyaev YU.V., Shutko A.M., Sidorov I.A. i dr. SVCH-radiometriya zemnoi i vodnoi poverkhnostei: ot teorii k praktike [Microwave radiometry of the earth and water surfaces: from theory to practice]. Sofiya, Akademicheskoe izdatel'stvo imeni prof. Marina Drinova. 2014. (In Russion)

5. Eremenko E.A., Panin A.V. Lozhbinnyi mezorel'ef Vostochno-Evropeiskoi ravniny. [Hollow mesorelief of the East European Plain]. Moscow, MIROS Publ. 2010. 192 p. (In Russion)

6. Ivanov D.A. Development of landscape-adaptive land use in the Upper Volga region based on geostatistical methods. Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. [Bulletin of Brest State Technical University]. 2019. №2. P.14-23. https://rep.bstu.by/bitstream/handle/data/3742/14-23.pdf?sequence=1&isAllowed=y. (In Russion)

7. Kiryushin V.I. Teoriya adaptivno-landshaftnogo zemledeliya i proektirovaniya agrolandshaftov. [Theory of adaptive-landscape agriculture and design of agricultural landscapes]. Moscow, Koloss Publ. 2013. 443 p. (In Russion)

8. Likhanova I. A., Zheleznova G. V. Syntaxonomy of Derived Communities in the Deposits of the Middle and Southern Taiga of the European North-East of Russia. Turczaninowia. 2021. V.24. №4. P.140-156. http://turczaninowia.asu.ru/article/view/10796 .

9. Malyshkin N.G. The effectiveness of chemical weed control in spring wheat crops in the conditions of the Northern Trans-Urals. PhD thesis. Tyumen'. 2008.

10. Markov M.V. Agrofitotsenologiya. [Agrophytocenology]. Kazan', Kazan University Publ. 1972. 226 p. (In Russion)

11. Matyuk N.S., Rassadin A.YA., Polin V.D.. Soldatova S.S. Cultivation and cultivation of fallow lands in the Central Non-Black Earth Region. Zemledelie [Agriculture]. 2010. №4. P.26-29. https://cyberleninka.ru/article/n/obrabotka-i-okulturivanie-zalezhnyh-zemel-v-tsentralnom-nechernozemie

12. Medvedev I.F., Gubarev D.I., Grafov V.P. Facial differentiation of land resources on the basis of increasing the greening of the agricultural landscape. Zemledelie [Agriculture]. 2018. №1. P.0-15.

13. Mutikov V.M. Rekomendatsii po vvedeniyu zalezhnykh zemel' v oborot. [Recommendations for the introduction of fallow lands into circulation.]. Cheboksary. 2008. 8 p. (In Russion)

14. Plyushchev V.A., Sidorov I.A., Microwave radiometric systems with synthetic aperture. Rossiiskii tekhnologicheskii zhurnal [Russian technological journal]. 2014. №1(2). P.119-127.

15. Fisyunov A.V. Sornye rasteniya [Weed plants]. Moscow, Koloss Publ. 1984. 320 p.

16. Yakushev V.P. Na puti k tochnomu zemledeliyu [On the way to precision farming.]. St-Petersbug. PIYAF Publ. 2002. 458 p. (In Russion)

17. Archer F., Shutko A., Coleman T., Haldin A., Sidorov I., Novichikhin E. Microwave Remote Sensing of Land Surface from Mobile Platform: The Alabama 2003-2005 Experiment. Abstract. To be presented at "The Int 7IEEE 2006 Geoscience & Remote Sensing Symposium (IGARSS'06)". Denver, CO, USA. 31 July- 04 August. 2006.

18. K.H. Dammer, M. Schirman. Primarily tests of a optoelectronic in-canopy sensor for evaluation of vertical disease infection in cereals. Pest management Science. 2022. V.78. P.143-149. https://doi.org/10.1002/ps.6623

19. Jackson T.J., Schmugge T.J. Vegetation effects on the microwave emission of soils. Remote Sensing of Environment. 1991. V.36. P.203-212 https://doi.org/10.1016/0034-4257(91)90057-D

20. Katterer T. and Andren O. Predicting daily soil temperature profiles in arable soil in cold temperature regions from air temperature and leaf area index. 2009.Acta Agricultural Scandinavica, Section B-Plant soil, Science. V.59. №1. P.77-86

21. Ustyuzhanin A., Schirmann J.I., Chochlov N., Dammer K.-H. Identifizierung von Beifuβblättriger Ambrosie (Ambrosia artemisiifolia) mittelsBildverarbeitung in einemWinterrogenfeld. GesundePflanzen. 2015. V.67. 165-173 p.

22. Natalie R., Bumgarner, Whitney S. Miller, and Matthew D., Kleinhenz I. Digital Image Analysis to Supplement Direct Measures of Lettuce Biomass Hortechnology. Hort-Technology. 2012. V.22(4) P.547-555. https://cpb-us-w2.wpmucdn.com/u.osu.edu/dist/9/24091/files/2015/10/Bumgamer_DigitalImageAnalysis-2eoibo2.pdf

23. Khokthong W., Zemp D.C., Irwan B.et all. Drone-Based Asssesment of Canopy Cover for Analysing Tree Morttality in an Oil Palm Agroforest. Front. For.Glob.Change. 2019. V.30. https://doi.org/10.3389/ffgc.2019.00012

24. UAVs in Agriculture. [web]. https://www.fas.scot. Date of application:15.11.2022. https://www.fas.scot

25. Sidorov I.A., Gudkov A.G., Agasieva S.V., Khokhlov N.F., Chernikov A.S., Vagapov Y. A portable microwave radiometer for proximal measurement of soil permittivity. Computers and Electronics in Agriculture. 2022. V.198. https://www.sciencedirect.com/science/article/abs/pii/S0168169922003933?via%3Dihub#:~:text=https%3A//doi.org/10.1016/j.compag.2022.107076

26. Wigneron J.-P., Jackson T.J., O'Neill P., Lannoy G. De, Rosnay P., Walker J.P., Ferrazzoli P., Mironov V., Bircher S, Grant J.P., Kurum M., Schwank M., Munoz-Sabater J., Das N., Royer A., Al-Yaari A., Al Bitar A., Fernandez-Moran R., Lawrence H., Mialon A., Parrens M., Richaume P., Delwart S., Kerr Y., Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sensing of Environment. 2017. V.192. P.238-262. https://doi.org/10.1016/j.rse.2017.01.024

27. Bolotov A.G., Shein E.V., Sidorov I.A. Method for Determining Soil Moisture in the System of Adaptive-Landscape Agriculture. Nanotekhnologii: razrabotka, primenenie - XXI vek [Nanotechnologies: development, application - XXI century].  2021. V.13. №4. P.10-14. https://doi.org/10.18127/j22250980-202104-02

28. Sidorov I.A. Methods for determining soil moisture for a precision farming system. Nanotekhnologii: razrabotka, primenenie - XXI vek [Nanotechnologies: development, application - XXI century]. 2018. V.10. №4. P.44-50.

29. Sidorov I.A., Gudkov A.G., Shashurin V.D., Chizhikov S.V., Novichikhin E.P., Khokhlov N.F., Porokhov I.O., Pchelintsev V.EH., Agandeev R.V. Remote determination of the moisture profile of the dam by a microwave radiometer from an unmanned aerial vehicle. Nanotekhnologii: razrabotka, primenenie - XXI vek [Nanotechnologies: development, application - XXI century]. 2022. V.14. №3. P.5-13. https://doi.org/10.18127/j22250980-202203-01

 

For citation:

 Novichikhin E.P., Khokhlov N.F.,  Bolotov A.G.,  Sidorov I.A., Gudkov A.G.,  Porokhov I.O.,  Chizhikov S.V. Heuristic and applied potential of combining microwave humidity-temperature sensing of soil and photographing in facially differentiated agricultural systems. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №11. https://doi.org/10.30898/1684-1719.2022.11.18 (In Russian)