Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №11
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.11.19

 

APPLICATION OF QUEUING THEORY TO THE ESTIMATION OF THE FEATURE SPACE FOR RADAR SOURCES IN MACHINE LEARNING

 

A.V. Kvasnov

 

Peter the Great St. Petersburg Polytechnic University, 195251, Politehnicheskaja street 29 St. Petersburg, Russia

 

The paper was received October 31, 2022

 

Abstract. The estimation of the feature space in analysis of radar signals (airplanes, ships, navigation stations, etc.), is an important element of machine learning. From the point of view of queuing theory, a mathematical model of a complex detected signal can be represented as the ordinary flow of events described by a Poisson distribution for randomly varying parameters of a signal. The paper demonstrates the orthogonality of the characteristic space of radar sources based on the entropy estimation. We show that the information measure of the discrepancy (Kullback-Leibler divergence) between intra-pulse modulation signals and frequency-modulated signals decreases with increasing pulse duration. Thus, in the recognition of radar sources using methods of machine learning, it is possible to limit ourselves to features without algorithms for processing intra-pulse modulation.

Key words: radar source, queuing theory, Kullback-Leibler divergence, machine learning.

Financing:  “The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2020-934 dated 17.11.2020)”

Corresponding author: Kvasnov V. Anton, Kvasnov_AV@spbstu.ru

References

1. Kvasnov A.V. Methodology of classification and recognition of the radar emission sources based on Bayesian programming. IET Radar, Sonar & Navigation. 2020. V.14. 8. P.1175-1182. DOI: 10.1049/iet-rsn.2019.0380

2. Kvasnov A.V. Primeneniya bajesovskogo programmirovaniya v zadachah raspoznavaniya i klassifikacii istochnikov radioizlucheniya [Applications of Bayesian programming in problems of recognition and classification of radio sources]. Radiotekhnika [Radio Engineering]. 2020. V.84. №3(5). P.5-14. (In Russian)

3. Richard G. Wiley. ELINT: The Interception and Analysis of Radar Signals. Artech House. 2006. 451 p.

4. Sokolova A.V. Passivnaya radiolokaciya: metody obnaruzheniya ob"ektov [Passive radar: methods for detecting objects.]. Moskva, Radiotekhnika [Radio Engineering]. 2008. 320 p. (In Russian)

5. Dudczyk J. A method of feature selection in the aspect of specific identification of radar signals. Bulletin of the polish academy of sciences technical sciences. 2017. V.65. 1. P.113.

6. Gudfellou YA., Bendzhio I., Kurvill' A. Glubokoe obuchenie [Deep learning]. Moscow, DMK. 2018. 652 p. (In Russian)

7. Chenxi W., Xiaobo W. A Target Recognition Method of Multi-radar. Fifth International Conference on Fuzzy Systems and Knowledge Discovery. 2008. P.162-166.

8. Kvasnov A.V. Opredelenie dal'nosti do istochnika radioizlucheniya po ehnergopotencialu prinimaemogo signala [Method of determine the distance for radar emitting source by the energy potential of the received signal]. Datchiki i sistemy [Sensors & Systems]. 2020. V.243. №1. P.29-34. (In Russian)

9. Adzhemov S.S., Klenov N.V., Tereshonok M.V., Chirov D.S. Metody raspoznavaniya vidov cifrovoj modulyacii signalov v kognitivnykh radiosistemakh [Methods for the automatic recognition of digital modulation of signals in cognitive radio systems]. Radiofizika. ehlektronika, akustika. [Moscow University Physics Bulletin]. 2015. №6. P.19-27. (In Russian)

10. Adzhemov S.S., Tereshonok M.V., Chirov D.S. Raspoznavanie vidov cifrovoj modulyacii radiosignalov s ispol'zovaniem nejronnykh setej [Type recognition of the digital modulation of radio signals using neural networks]. VMU. Fizika. Astronomiya [Moscow University Physics Bulletin]. 2015. №1. P.23. (In Russian)

11. Jiang Q. Network Radar Countermeasure Systems. Heidelberg New York Dordrecht London, Springer. 2016. 315 p.

12. Mel'nikov Yu.P. Vozdushnaya radiotekhnicheskaya razvedka (metody ocenki ehffektivnosti) [Aerial radio-technical reconnaissance (methods of efficiency assessment)]. Moscow, Radiotekhnika [Radio Engineering]. 2005. 304 p. (In Russian)

13. Smirnov Yu.A. Radiotekhnicheskaya razvedka [Radio technical intelligence]. Moscow, Voenizdat. 2001. 456 p. (In Russian)

14. Kuschel H., Cristallini D. and Olsen K.E. Tutorial: Passive radar tutorial. IEEE Aerospace and Electronic Systems Magazine. 2019. V.34. 2. P.2-19.

15. Kvasnov A.V. Study of information completeness of radar data for air target classification. Zhurnal Radioelektroniki [Journal of Radio Electronics] [online]. 2021. №11. https://doi.org/10.30898/1684-1719.2021.11.13 (In Russian)

16. Kvasnov A.V. Povyshenie informacionnoj polnoty klassifikatora v zadachakh distancionnogo zondirovaniya vozdushnykh tochechnykh ob"ektov [Enhance of information completeness of classifier in remote sensing tasks of aerial point objects]. Datchiki i sistemy [Sensors & Systems]. 2022. V.262. №3. P.9-14. (In Russian)

17. Ivchenko G.I., Kashtanov V.A., Kovalenko I.N. Teoriya massovogo obsluzhivaniya. Uchebnoe posobie dlya vuzov-e [Queuing theory]. Moscow, Vysshaya shkola. 1982. 256 p. (In Russian)

18. Kvasnov A.V. Ocenka postroeniya trassy radiolokacionnoj celi nepodvizhnym luchom AFAR v dal'nej zone nablyudeniya [Evaluation of the construction of a radar target route by a fixed AFAR beam in the far observation zone]. Radiotekhnika [Radio Engineering]. 2017. 2. P.4-12. (In Russian)

For citation:

Kvasnov A.V. Application of queuing theory to the estimation of the feature space for radar sources in machine learning. Zhurnal Radioelektroniki [Journal of Radio Electronics] [online]. 2021. №11. https://doi.org/10.30898/1684-1719.2022.11.19 (In Russian)