Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. 11
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.11.4

 

FORMATION OF A NECKLACE TYPE MICROSTRUCTURE

BY THE FORGING OF THE HEUSLER Ni-Mn-Ga-Si ALLOYS

AS A WAY TO INCREASE MECHANICAL PROPERTIES

 

I.I. Musabirov

 

Institute for Metals Superplasticity Problems of Russian Academy of Sciences

450001, Russia, Ufa, S. Khalturin str., 39

 

The paper was received November 18, 2022.

 

Abstract. The standard technique for melting Heusler alloys involves melting in an argon-arc furnace on a water-cooled copper crucible. As a result of intensive crystallization of the ingot, large elongated crystals are formed in the structure. The thermo-mechanical treatment of such a structure is ineffective, since microcracks are formed along the boundaries of large crystals as a result of internal stresses and martensitic transformation, along which then, during processing, cracks develop and the workpiece is destroyed. It is shown that additional heat treatment by the vacuum induction remelting makes it possible to eliminate this effect. As a result of the treatment, an equiaxed granular microstructure with a grain size of about 200 μm is formed. However, as a result of remelting in a quartz crucible, silicon atoms diffuse into the bulk of the ingot. Its content varies in the range of 1-2% depending on the duration of exposure in the molten state. A uniform distribution of silicon, without the formation of additional phases is shown by energy-dispersive analysis. Thus, the Ni54.1Mn19.6Ga24.6Si1.7, Ni56.2Mn18.8Ga23.2Si1.8, Ni57.4Mn18.2Ga22.7Si1.7 and Ni56.5Mn20.1Ga22.3Si1.2 alloys were obtained. A partially recrystallized structure of the "necklace" type was formed in the alloys by the multiaxial isothermal forging at 950-973 K and the true degree of deformation e=1.9...3.9. The initial large grains with a size of 100-200 microns are surrounded by a layer of fine-grained structure. The thickness of the interlayer at the periphery of the workpiece is about 5 grains. In the center of the workpiece, the proportion of the fine-grained structure may prevail over the coarse-grained structure. The study of cyclic and fatigue strength was carried out by the method of three-point bending during cyclic tests in the temperature range of martensitic transformation using the example of the Ni54.1Mn19.6Ga24.6Si1.7 alloy in the initial state and the Ni57.4Mn18.2Ga22.7Si1.7 alloy in the forged state. It is shown that the “necklace” type microstructure, compared to the equiaxed microstructure, demonstrates a twofold advantage in cyclic strength and a fivefold advantage in fatigue strength.

Key words: Heusler alloys, Ni-Mn-Ga-Si, multiaxial isothermal forging, necklace microstructure, martensite, cyclic strength, fatigue strength, three-point bending

Financing: The present work was accomplished according to the state assignment of IMSP RAS.

Acknowledgement: Studies were carried out on the facilities of shared services center of the Institute for Metals Superplasticity Problems of Russian Academy of Sciences «Structural and Physical-Mechanical Studies of Materials».

Corresponding author: Musabirov Irek Ilfirovich, irekmusabirov@mail.ru

 

References

1. Pagounis E., Szczerba M.J., Chulist R., Laufenberg M. Large magnetic field-induced work output in a NiMnGa seven-layered modulated martensite. Appl. Phys. Lett. 2015. V.107. 15. P.152407. https://doi.org/10.1063/1.4933303

2. Sozinov A., Lanska N., Soroka A., Zou W. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite. Appl. Phys. Lett. 2013. V.102. 2. P.021902. https://doi.org/10.1063/1.4775677

3. Chulist R., Pagounis E., Czaja P., Schell N., Brokmeier H. New Insights into the Intermartensitic Transformation and Over 11% Magnetic Field-Induced Strain in 14 m Ni−Mn−Ga Martensite. Adv. Eng. Mater. 2021. V.23. P.2100131. https://doi.org/10.1002/adem.202100131

4. Zhou Z., Wu P., Ma G., Yang B., Li Z., Zhou T., Wang D., Du Y. Large reversible magnetic-field-induced strain in a trained Ni49.5Mn28Ga22.5 polycrystalline alloy. Journal of Alloys and Compounds. 2019. V.792. P.399-404. https://doi.org/10.1016/j.jallcom.2019.04.038

5. Mendonca A.A., Jurado J.F., Stuard S.J., Silva L.E.L., Eslava G.G., Cohen L.F., Ghivelder L., Gomes A.M., Giant magnetic-field-induced strain in Ni2MnGa-based polycrystal. Journal of Alloys and Compounds. 2018. V.738. P.509-514. https://doi.org/10.1016/j.jallcom.2017.12.197

6. Gaitzsch U., Potschke M., Roth S., Rellinghaus B., Schultz L. A 1% magnetostrain in polycrystalline 5M Ni–Mn–Ga. Acta Mater. 2009. V.57. P.365-370. https://doi.org/10.1016/j.actamat.2008.09.017

7. Li Z., Li Z., Yang B., He X., Gan W., Zhang Y., Li Z., Zhang Y., Esling C., Zhao X., Zuo L. Over 2% magnetic-field-induced strain in a polycrystalline Ni50Mn28.5Ga21.5 alloy prepared by directional solidification. Materials Science & Engineering A. 2020. V.780. P.139170. https://doi.org/10.1016/j.msea.2020.139170

8. Cheng P., Zhang G., Li Z., Yang B., Zhang Z., Wang D., Du Y. Combining magnetocaloric and elastocaloric effects to achieve a broad refrigeration temperature region in Ni43Mn41Co5Sn11 alloy. J. Magn. Magn. Mater. 2022. V.550. P.169082. https://doi.org/10.1016/j.jmmm.2022.169082

9. Kaletina Y.V., Gerasimov E.G., Terentev P.B., Kaletin A.Yu. Martensitic Transformation, Magnetotransport Properties, and Magnetocaloric Effect in Ni47-xMn42+xIn11 Alloys (0≤x≤2). Phys. Solid State. 2021. V.63. P.550-555. https://doi.org/10.1134/S1063783421040090

10. Gamzatov A., Batdalov A.B., Khizriev Sh.K., Aliev A.M., Khanov L.N., Yen N.H., Dan N.H., Zhou H., Yu S.-C., Kim D.-H.. Phase transitions, thermal, electrical, and magnetocaloric properties of Ni50Mn37-xAlxSn13 (x=2, 4) ribbon samples. J. Alloys Compd. 2022. V.842. P.155783. https://doi.org/10.1016/j.jallcom.2020.155783

11. Dey S., Roy R.K., Mallick A. B., Mitra A., Panda A.K. Influence of rapid solidification on mangnetostructural and magnetocaloric effect in Ni53Mn24Ga23 alloy. Materials Today Communications. 2018. V.17. P.140-143. https://doi.org/10.1016/j.mtcomm.2018.09.001

12. Koshkid’ko Yu.S., Dilmieva E.T., Kamantsev A.P., Cwik J., Rogacki K., Mashirov A.V., Khovaylo V.V., Salazar Mejia C., Zagrebin M.A., Sokolovskiy V.V., Buchelnikov V.D., Ari-Gur P., Bhale P., Shavrov V.G., Koledov V.V. Magnetocaloric effect and magnetic phase diagram of Ni-Mn-Ga Heusler alloy in steady and pulsed magnetic fields. J. Alloys Compd. 2022. V.904. P.164051. https://doi.org/10.1016/j.jallcom.2022.164051

13. Li D., Li Z., Yang J., Li Z., Yang B., Yan H., Wang D.,Hou L., Li X., Zhang Y., Esling C., Zhao X., Zuo L. Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy. Scripta Mater. 2019. V.163. P.116-120. https://doi.org/10.1016/j.scriptamat.2019.01.014

14. Shen Y., Sun W., Wei Z.Y., Shen Q., Zhang Y.F., Liu J. Orientation dependent elastocaloric effect in directionally solidified Ni-Mn-Sn alloys. Scripta Mater. 2019. V.163. P.14-18. https://doi.org/10.1016/j.scriptamat.2018.12.026

15. Chen J., Lei L., Fang G. Elastocaloric cooling of shape memory alloys: A review. Materials Today Communications. 2021. V.28. P.102706. https://doi.org/10.1016/j.mtcomm.2021.102706

16. Wang J., Yu Q., Xu K., Zhang C., Wu Y., Jiang C. Large room-temperature elastocaloric effect of Ni57Mn18Ga21In4 alloy undergoing a magnetostructural coupling transition. Scripta Mater. 2017. V.130. P.148-151. https://doi.org/10.1016/j.scriptamat.2016.11.024

17. Guo J., Wei Z., Shlen Y., Zhang Y., Li J., Hou X., Liu J. Low-temperature superelasticity and elastocaloric effect in textured Ni–Mn–Ga–Cu shape memory alloys. Scripta Mater. 2020. V.185. P.56-60. https://doi.org/10.1016/j.scriptamat.2020.04.007

18. Metlov L.S., Koledov V.V., Shavrov V.G., Morozov E.V., Tekhtelev Yu.V., Taskaev S.V. Simulation of elasto-caloric effectsin heusler alloys. Chelyabinskii fiziko-matematicheskii zhurnal [Chelyabinsk Physical and Mathematical Journal]. 2020. V.5. №4. P.592-600. https://doi.org/10.47475/2500-0101-2020-15418 (In Russian)

19. Everhart W., Newkirk J. Mechanical properties of Heusler alloys. Heliyon. 2019. V.5. №5. P.e01578. https://doi.org/10.1016/j.heliyon.2019.e01578

20. Pushin V.G., Marchenkova E.B., Korolev A.V., Kourov N.I., Belosludtseva E.S., Pushin A.V., Uksusnikov A.N. Magnetically controlled thermoelastic martensite transformations and properties of a fine-grained Ni54Mn21Ga25 alloy. Physics of the Solid State. 2017. V.59. №7. P.1321-1331. https://doi.org/10.1134/S1063783417070198

21. Marchenkova E.B., Pushin V.G., Kazantsev V.A., Korolev A.V., Kourov N.I., Pushin A.V. Thermoelastic martensite transformations and the properties of ultrafine-grained Ni54Mn20Fe1Ga25 alloys obtained by melt quenching. The Physics of Metals and Metallography. 2018. V.119. №10. P.936-945. https://doi.org/10.1134/S0031918X18100095  

22. Yang J., Li Z., Yang B., Yan H., Cong D., Zhao X., Zuo L. Strain manipulation of magnetocaloric effect in a Ni39.5Co8.5Mn42Sn10 melt-spun ribbon. Scripta Mater. 2023. V.224. P.115141. https://doi.org/10.1016/j.scriptamat.2022.115141

23. Zhang Y., Ouyang J., Wang X., Tian Y., Ren Z. Magneto-structural transformations and magnetocaloric effect in the Heusler type Ni48Cu2Mn36Sn14-xTix melt-spun ribbons. Materials Chemistry and Physics. 2022. V.290. P.126527. https://doi.org/10.1016/j.matchemphys.2022.126527

24. Yang J., Li Z., Yang B., Yan H., Cong D., Zhao X., Zuo L. Effects of Co and Si co-doping on magnetostructural transformation and magnetocaloric effect in Ni-Mn-Sn based alloys. J. Alloys Compd. 2022. V.892. P.162190. https://doi.org/10.1016/j.jallcom.2021.162190

25. Li Z., Dong S., Li Z., Yang B., Liu F., Sanchez-Valdes C.F., Sanchez Llamazares J.L., Zhang Y., Esling C., Zhao X., Zuo L. Giant low-field magnetocaloric effect in Si alloyed Ni-Co-Mn-In alloys. Scripta Mater. 2019. V.159. P.113-118. https://doi.org/10.1016/j.scriptamat.2018.09.029

26. Musabirov I.I., Safarov I.M., Galeyev R.M., Afonichev D.D., Gaifullin R.Y., Kalashnikov V.S., Dilmieva E.T., Koledov V.V., Taskaev S.V., Mulyukov R.R. Influence of Multi-Axial Isothermal Forging on the Stability of Martensitic Transformation in a Heusler Ni-Mn-Ga Alloy. Trans. Indian. Inst. Met. 2021. V.74. P.2481-2489. https://doi.org/10.1007/s12666-021-02349-9

27. Musabirov I.I., Safarov I.M., Galeyev R.M., Afonichev D.D., Koledov V.V., Rudskoi A.I., Mulyukov R.R. Plastic deformation of the Ni-Mn-Ga alloy by multiple isothermal forging. Fizika i mekhanika materialov [Materials Physics and Mechanics]. 2017. V.33. №1. P.124-136. https://doi.org/10.18720/MPM.3312017_13 (In Russian)

28. Musabirov I.I., Safarov I.M., Galeyev R.M., Gaisin R.A., Mulyukov R.R., Koledov V.V. Anisotropy of the thermal expansion of a polycrystalline Ni-Mn-Ga alloy subjected to plastic deformation by forging. Fizika tverdogo tela [Physics of the Solid State]. 2018. V.60. №6. P.1061-1067. https://doi.org/10.1134/S1063783418060240 (In Russian)

29. Musabirov I.I., Galeyev R.M., Safarov I.M. Thermal expansion anisotropy formed by extrusion for Ni2.26Mn0.80Ga0.89Si0.05 alloy. J. Magn. Magn. Mater. 2020. V.514. P.167160. https://doi.org/10.1016/j.jmmm.2020.167160

30. Musabirov I.I., Safarov I.M., Galeyev R.M., Afonichev D.D., Gaifullin R.Y., Koledov V.V., Taskaev S.V., Mulyukov R.R. Effect of treatment by isothermal forging on martensitic transformation in the Ni-Mn-Ga Heusler alloys. Chelyabinskii fiziko-matematicheskii zhurnal [Chelyabinsk Physical and Mathematical Journal]. 2020. V.5. №4-2. P.601-611. https://doi.org/10.47475/2500-0101-2020-15419 (In Russian)

31. Sivaprakash P., Muthu S.E., Infanta J.J., Rajkumar S., Kim I., Arumugam S. Investigation of exchange bias and magnetoresistance in the Si substituted Ni-Mn-In ribbon alloys. Materials Science and Engineering: B. 2022. V.286. P.116067. https://doi.org/10.1016/j.mseb.2022.116067

32. Musabirov I.I., Mulyukov K.Y., Koledov V.V., Shavrov V.G. Thermal expansion of Ni2.08Mn0.96Ga0.96 alloy. Zhurnal tekhnicheskoi fiziki [Journal of Technical Physics]. 2011. V.56. №3. P.423-426. https://doi.org/10.1134/S1063784211030145 (In Russian)

33. Musabirov I.I., Mulyukov K.Y., Safarov I.M. Texture investigations of polycrystalline Ni2MnGa alloy. Pis'ma o materialakh [Letters on materials]. 2012. V.2. №3. P.157-160. https://doi.org/10.22226/2410-3535-2012-3-157-160 (In Russian)

For citation:

Musabirov I.I. Formation of a necklace type microstructure by the forging of the Heusler Ni-Mn-Ga-Si alloys as a way to increase mechanical properties. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №11. https://doi.org/10.30898/1684-1719.2022.11.4