Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. №11
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2022.11.6
Electronic structure and interatomic exchange interactions
in LaFe13-xSix alloys
A.V. Golovchan 1,2, A.P. Kamantsev 2, V.G. Shavrov 2, O.E. Kovalev 1,2, A.P. Sivachenko 1,2
1 Galkin Donetsk Institute for Physics and Engineering
283114, Russia, Donetsk, R. Luxembourg str., 72
2 Kotelnikov Institute of Radioengineering and Electronics of RAS
125009, Russia, Moscow, Mokhovaya str., 11/7
The paper was received November 26, 2022.
Abstract. In the present work, an ab initio calculation of the electronic structure and interatomic exchange integrals of the LaFe13-xSix system, which has a giant magnetocaloric effect, has been carried out. On the basis of the obtained interatomic exchange integrals in the framework of the classical Heisenberg model, the Monte Carlo method is used to estimate the temperature dependence of the magnetization. It has been found that the standard structural model of the studied alloys, which assumes the distribution of Si atoms only over the vertices of a regular icosahedron (sites of the FeII type), gives Curie temperatures that are 2–3 times higher than the experimental ones. The transition of some Si atoms to the center of the icosahedron (FeI positions) brings the theoretical Curie temperature closer to the experimental one.
Key words: magnetocaloric effect, electronic structure, interatomic exchange integrals.
Financing: Support by RSF (grant № 22-29-01201) is acknowledged.
Corresponding author: Golovchan Aleksay Vitalievich, golovchan1@yandex.ru
References
1. Khovaylo V.V., Taskaev S.V. Magnetic Refrigeration: From Theory to Applications. Encyclopedia of Smart Materials. 2022. V.5. P.407-417. https://doi.org/10.1016/B978-0-12-815732-9.00132-7
2. Franco V., Blazquez J.S., Ipus J.J., Law J.Y., Moreno-Ramirez L.M., Conde A. Magnetocaloric effect: from materials research to refrigeration devices. Progress in Material Science. 2018. V.93. P.112-232. https://doi.org/10.1016/j.pmatsci.2017.10.005
3. Fujieda S., Fujita A., Fukamichi K. Large magnetocaloric effect in La(FexSi1-x)13 itinerant-electron metamagnetic compounds. Applied Physics Letters. 2002. V.81. №7. P.1276-1278. https://doi.org/10.1063/1.1498148
4. Bouthar A., Phejar M., Boncour V.P., Bessias L., Lassri H. Theoretical work in magnetocaloric effect of LaFe13-xSix compounds. J. Supercond. Nov. Magn. 2014. V.27. P.1795-1800. http://dx.doi.org/10.1007/s10948-014-2542-z
5. Jia L. Sun J.R., Wang F.W., Zhao T.Y. et al. Volume dependence of magnetic coupling in LaFe13-xSix based compounds. Applied Physics Letters. 2008. V.92. P.101904. https://doi.org/10.1063/1.2894194
6. Jia L., Sun J.R., Shen J., Dong Q.Y. et al. Magnetocaloric effect in the La(Fe,Si)13 intermetallics doped by different elements. Journal of Applied Physics. 2009. V.105. P.07A924. https://doi.org/10.1063/1.3072021
7. Jia L., Sun J.R., Shen J., Dong Q.Y. et al. Magnetic coupling between rare-earth and iron atoms in the La1-xRxFe11.5Si1.5 (R=Ce, Pr and Nd) intermetallics. Applied Physics Letters. 2008. V.92. P.182503. https://doi.org/10.1063/1.2921781
8. Moreno-Ramirez L.M., Romero-Muniz C., Law J.Y., Franco V. et al. Tunable first order transition in La(Fe,Cr,Si)13 compounds: retaining magnetocaloric response despite a magnetic moment reduction. Acta Materialia. 2019. V.175. P.406. https://doi.org/10.1016/j.actamat.2019.06.022
9. Krautz M. Skokov K., Gottschall T., Teixeira C.S. et al. Systematic investigation of Mn substituted La(Fe,Si)13 alloys and their hydrides for room-temperature magnetocaloric application. Journal of Alloys and Compounds. 2014. Т.598. P.27-32. http://dx.doi.org/10.1016/j.jallcom.2014.02.015
10. Lovell E., Bez H.N., Boldrin D.C. The La(Fe,Mn,Si)13Hz magnetic phase transition under pressure. Physica Status Solidi. 2017. V.11. P.1700143. https://doi.org/10.1002/pssr.201700143
11. Radulov I.A., Karpenkov D.Yu., Skokov K.P., Karpenkov A.Yu. et al. Production and properties of metal-bonded La(Fe,Mn,Si)13Hx composite material. Acta Materialia. 2017. V.127. P.389-399. https://doi.org/10.1016/j.actamat.2017.01.054
12. Fujieda S., Fujita A., Kawamoto N., Fukamichi K. Strong magnetocaloric effects in La1−zCez(Fex−yMnySi1−x)13 at low temperatures. Applied Physics Letters. 2006. V.89. №6. P.062504. https://doi.org/10.1063/1.2227631
13. Suslov D.A., Shavrov V.G., Koledov V.V., Mashirov A.V. et al. Comparison of thermodynamic efficiency of cryogenic gas and solid-state magnetocaloric cycles. Chelyabinsk Physical and Mathematical Journal. 2020. V.5. P.612-617. 10.47475/2500-0101-2020-15420
14. Liu J.J., Zhang Y., Xia W.X., Du J., Yan A.R. Systematic study of the microstructure and magnetocaloric effect of bulk and melt-spun ribbons of La-Pr-Fe-Si compounds. Journal of Magnetism and Magnetic Materials. 2014. V.350. P.94-99. https://doi.org/10.1016/j.jmmm.2013.09.027
15. Zong S.T., Wang C.L., Long Y., Fu B. et al. Solid solubility in 1:13 phase of doping element for La(Fe,Si)13 alloys. AIP Advances. 2016. V.6. P.056223. https://doi.org/10.1063/1.4945996
16. Boutahar A., Hlil E.K., Lassri A., Fruchart D. Magnetic and electronic studies of LaFe13-xSix compounds with 1.3≤x≤1.69. Journal of Magnetism and Magnetic Materials. 2013. V.347. P.161-164. http://dx.doi.org/10.1016/j.jmmm.2013.07.040
17. Wang G., Wang F., Di N., Shen B., Cheng Z. Hyperfine interactions and band structures of LaFe13-xSix intermetallic compounds with large magnetic entropy changes. Journal of Magnetism and Magnetic Materials. 2006. V.303. P.84-91. https://doi.org/10.1016/j.jmmm.2005.10.231
18. Kuz’min M.D., Richter M. Mechanism of the strong magnetic refrigerant performance of LaFe13-xSix. Physical Review B. 2007. V.76. P.092401. http://dx.doi.org/10.1103/PhysRevB.76.092401
19. Gercsi Z. Magnetic coupling in transition-metal-doped LaSiFe11.5TM0.5 (TM = Cr, Mn, Co and Ni). EPL. 2015. V.110. P.47006. http://dx.doi.org/10.1209/0295-5075/110/47006
20. Gercsi Z., Fuller N., Sandeman K.G., Fujita A. Electronic structure, metamagnetism and thermopower of LaSiFe12 and interstitially doped LaSiFe12. J.Phys. D: Appl.Phys. 2018. V.51. P.034003. https://doi.org/10.1088/1361-6463/aa9ed0.
21. Fujita A. Relation between paramagnetic entropy and disordered local moment in La(Fe0.88Si0.12)13 magnetocaloric compound. APL Materials. 2016. V.4. P.064108. http://dx.doi.org/10.1063/1.4953434
22. Gruner M.E., Keune W., Cuenya B.R., Weis C. et al. Element-resolved thermodynamics of magnetocaloric LaFe13−xSix. Physical Review Letters. 2015. V.114. №5. P.057202. https://doi.org/10.1103/PhysRevLett.114.057202
23. Ebert H., et al. Munich SPRKKR band structure program package, version 8.6 [web]. Ludwig-Maximilians-Universität München. Дата обращения: 20.11.22. URL: https://www.ebert.cup.uni-muenchen.de/index.php/de/software/13-sprkkr
24. Ebert H., Ködderitzsch D., Minár J. Calculating condensed matter properties using the KKR-Green's function method – recent developments and applications Reports on Progress in Physics. 2011. V.74. P.096501. http://doi.org/10.1088/0034-4885/74/9/096501
25. Vosko S.H., Wilk L. Influence of an improved local-spin-density correlation-energy functional on the cohesive energy of alkali metals. Physical Review B. 1980. V.22. P.3812-3815. https://doi.org/10.1103/PhysRevB.22.3812
26. Liu X.B., Altounian Z., Ryan D.H. Structure and magnetic transition of LaFe13-xSix compounds. Journal of Physics: Condensed Matter. 2003. V.15. P.7385-7394. http://doi.org/10.1088/0953-8984/15/43/020
27. Liechtenstein A.I., Katsnelson M.I., Antropov V.P., Gubanov V.A. Journal of Magnetism and Magnetic Materials. 1987. V.67. P.65-74. https://doi.org/10.1016/0304-8853(87)90721-9
28. Mankovsky S., Ebert H. Accurate scheme to calculate the interatomic Dzyaloshinskii-Moriya interaction parameters. Physical Review B. 2017. V.96. P.104416. https://doi.org/10.1103/PhysRevB.96.104416
29. Wang F., Wang G.-J., Hu F.-X., Kurbakov A., Shen B.-G., Cheng Z.-H. Strong interplay between structure and magnetism in the giant magnetocaloric intermetallic compound LaFe11.4Si1.6: a neutron diffraction study. Journal of Physics: Condensed Matter. 2003. V.15. P.5269-5278. http://dx.doi.org/10.1088/0953-8984/15/30/309
30. Landau L.D., Binder K. A guide to Monte-Carlo simulation in statistical physics. Second edition. Cambridge University Press, UK. 2005. 432 p.
For citation:
Golovchan A.V., Kamantsev A.P., Shavrov V.G., Kovalev O.E., Sivachenko A.P. Electronic structure and interatomic exchange interactions in LaFe13-xSix alloys. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №11. https://doi.org/10.30898/1684-1719.2022.11.6 (In Russian)