Journal of Radio Electronics. eISSN 1684-1719. 2023. 11
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.11.12

 

ELASTIC RESONANCES IN STRUCTURE: THIN MAGNETIC FILM THICK ELASTIC SUBSTRATE

 

V.S. Vlasov1, V.N. Shaporov1, V.G. Shavrov2, V.I. Shcheglov2

 

1Syktyvkar State University, Syktyvkar, Russia

2Institute of Radio Engineering and Electronics RAS, Moscow, Russia

 

The paper was received September 19, 2023

 

Abstract. The task about excitation of connected magnetic and elastic vibrations in flat-parallel-structure consisted of thin magnetic film applied on thick nonmagnetic substrate is considered. For the solution of this task the model of propagation periodic boundary regime is proposed. This solution allowed to build the amplitude-frequency characteristics of magnetic and elastic vibrations. In this case the characteristic of magnetic vibrations has the view as wide bell-like maximum on which is put by equidistance net of narrow elastic resonances which divided one to another on the frequency elastic resonance along the substrate thickness. It is executed the model presentation of superposition elastic resonances on magnetic using the system of two connected oscillators which frequencies differs in some orders. It is supposed the mechanism of superposition elastic resonances on magnetic characteristic which consist of coincidence wave phase after two-path wave passage through the substrate thickness and phase of initial excitation. It is investigated the influence of elastic wave dissipation on the structure of amplitude-frequency characteristics of magnetization and elastic displacement. It is found the critical value of elastic dissipation parameter. It is shown that below of this value the elastic vibrations have resonance character and higher become non-periodical. It is found the inversion value of dissipation parameter which determined the transition from symmetrical distribution of elastic resonances on magnetic characteristic to anti-symmetrical. It is shown that the inversion value of dissipation parameter more (on two-three orders) smaller that critical value. It is found the phenomenon of second elastic resonance which is consist of exceeding frequency maximum rounding of elastic resonance net over the frequency of maximum magnetization characteristic. It is found the connected with dissipation second resonance splitting which take place near the neighbouring of inversion value dissipation parameter.

Key words: magnetic film, nonmagnetic substrate, magnetoelastic resonance, connected vibrations.

Financing: The work was performed within the framework of the state assignment of the V.A. Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences.

Corresponding author: Shcheglov Vladimir Ignatyevich, vshcheg@cplire.ru

References

1. Strauss W. Magnetoelastic properties of yttrium iron garnet ferrite. In book: Physical Acoustics. V.4. Part.B. Application of physical acoustics in quantum physics and solid state physics. New York and London: Academic Press. 1970. P.241-316.

2. Adam J.D. Analog signal processing with microwave magnetics. Proc. IEEE. 1988. V.76/2, P.159-170.

3. Ishak W.S. Magnetostatic wave technology: a review. Proc. IEEE. 1988. V.76. 2. P.171-187.

4. Adam J.D., Davis L.E., Dionne G.F., Schloemann E.F., Stitzer S.N. Ferrite devices and materials. IEEE Trans. on Microwave Theory and Techniques. 2002. V.50. 3. P.721-737.

5. Shavrov V.G., Shcheglov V.I. Magnetostatic waves in nonuniform fields. M.: Fizmatlit. 2016.

6. Kurushin e.p., Nefedov E.I. Application of thin mono-crystal ferrite films in microwave devices. Micro-electronics. 1977. V.6. 6. P.549-561.

7. Serga A.A., Chumak A.V., Hillebrands B. YIG magnonics J. Phys. D: Appl. Phys. 2010. V.43. P.264002(16).

8. LeCraw R.C., Comstock R.L. Magnetoelastic interactions in ferromagnetic dielectrics. In book: Physical Acoustics. V.3. Part.B. Lattice dynamics. New York and London: Academic Press. 1965. P.156.

9. Kalashnikova A.M., Kimel A.V., Pisarev R.V. Ultrafast optomagnetism. Phys. Usp. 2015. T.58. 10. P.969-980

10. Janusonis J., Chang C.L., Jansma T., Gatilova A., Vlasov V.S., Lomonosov A.M., Temnov V.V., Tobey R.I. Ultrafast magnetoelastic probing of surface acoustic transients. Phys. Rev. B. 2016. V.94. 2. P.024415(7).

11. Vlasov V.S., Golov A.V., Kotov L.N., Shcheglov V.I., Lomonosov A.M., Temnov V.V. The modern problems on ultrafast magnetoacoustics (Review). // Acoustic Physics. 2022. V.68. 1. P.18-47.

12. Sparks M., Tittmann B.R., Mee J.F.. .ewkirk C. Ferromagnetic resonance in epitaxial garnet thin films. JAP. 1969. V.40. 3. P.1518.

13. Chen H., De Gasperis P., Marcelli R., Pardavi-Horvath M., McMichael R., Wigen P.E. Wide-band linewidth measurements in yttrium iron garnet films. JAP. 1990. V.67. 9. P.5530.

14. Telesnin R.V., Kozlov D.I., Dudorov V.N., Ferromagnetic resonance in epitaxial films Y3Fe5-xGaxO12.. Phys. Sol. St. 1974. V.16. 11. P.3532.

15. Avaeva I.G., Lisovskii F.V., Osika V.A., Shcheglov V.I. Investigation of epitaxial films pf mixed ferrite-garnets by ferromagnetic resonance method. Phys. Sol. St. 1975. V.17. 10. P.3045.

16. Avaeva I.G., Lisovskii F.V., Osika V.A., Shcheglov V.I. Ferromagnetic resonance in epitaxial films of mixed ferrite-garnet. Journal of Communication Technology and Electronics. 1976. V.21. 9. P.1894.

17. Avaeva I.G., Lisovskii F.V., Osika V.A., Shcheglov V.I. Ferromagnetic resonance in epitaxial mixed ferrite-garnet films with cubic anisotropy. Phys. Sol. St. 1976. V.18. 12. P.3694.

18. An K., Litvinenko A.N., Kohno R., Fuad A.A., Naletov V.V., Vila L., Ebels U., De Loubens G., Hurdequint H., Beaulieu N., Ben Youssef J., Vukadinovic N., Bauer G.E.W., Slavin A.N., Tiberkevich V.S., Klein O. Coherent long-rare transfer of angular momentum between magnon Kittel modes by phonons. Phys. Rev. B. 2020. V.101. 6. P.060407(6)

19. Kuzmichev A.N., Vetoshko P.M., Knyazev G.A., Belotelpv V.I, Bunkov Yu.M. Features of the interaction of a magnon Bose-Einstein condensate with acoustic modes of Yttrium Iron Garnet films. JETP Letters. 2020. V.112. 11. P.710-714.

20. Polulyakh S.N., Bershansky V.N., Semuk T.Yu., Belotelov D.I., Vetoshko P.M., Popov V.V., Shaposhnikov A.N., Chernov A.I. Modulation of magnetoelastic connection by ferromagnetic resonance in ferrite-garnet films. Technical Physics. 2021. V.91. 7. P.1124-1131.

21. Polulyakh S.N., Bershansky V.N., Semuk T.Yu., Belotelov D.I., Vetoshko P.M., Popov V.V., Shaposhnikov A.N., Shumilov A.G., Chernov A.I. Ferromagnetic resonance and elastic vibrations in epitaxial yttrium ferrite-garnet films. JETP. 2021. V.159. 2. P.307-314.

22. Gulyaev Yu.V., Zilberman P.E., Kazakov G.T., Sysoev V.G., Tikhonov V.V., Filimonov Yu.A., Nam B.P., Khe A.S. Observation of fast magnetoelastic waves in thin yttrium-iron garnet wafers and epitaxial films. JETP Letters. 1981. V.34. 11. P.477-481.

23. Kazakov G.T., Tikhonov V.V., Zilberman P.E., Phys.Tv.Tela. 1983. V.25. 8. P.2307-2312.

24. Andreev A.S., Zilberman P.E., Kravchenko V.B., Ogrin Yu.F., Temiryazev A.G., Filimonova L.M. Tech.Phys.Letters. 1984. V.10. 2. P.90-94.

25. Khivintsev Yu.V., Sakharov V.K., Visotskii S.L., Filimonov Yu.A., Stognii A.I., Nikitov S.A. Magnetoelastic Waves in submicron Yttrium-Iron-Garnet films manufactured by means of ion-beam sputtering onto Gadolinium-Gallium-Garnet substrates. Technical Physics. 2018. V.63. 7. P.1029-1035.

26. Streib S., Keshtgar H., Bauer G.E.W. Damping of magnetization dynamics by phonon pumping. Phys.Rev.Lett. 2018. V.121. 2. P.027202(6).

27. Vetoshko P.M., Vlasov V.S., Shavrov V.G., Shcheglov V.I. Effect of elastic resonances of substrate on ferromagnetic resonance in yttrium iron garnet films. Journal of Communication Technology and Electronics. 2023. V.68. 2. P.156-163.

28. Tihonov A.N., Samarsky A.A. Equations of mathematical physics. M.: Nauka. 1972.

29. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound in a ferrite plate under the ferromagnetic-resonance conditions. Journal of Communications Technology and Electronics. 2009. V.54. 7. P.821-832.

30. Vlasov V.S., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound in double-slides ferrite structure. Zhurnal Radio electroniki Journal of Radio Electronics. 2013. 2. Available at: http://jre.cplire.ru/jre/feb13/10/text.pdf.

31. Vlasov V.S., Shavrov V.G., Shcheglov V.I. Combinational excitation of hypersound in double-slides ferrite structure. Book of papers of International conference Electromagnetic field and materials. M.: NIU MEI. 2013. P.164-176.

32. Vlasov V.S., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound in double-slides ferrite structure. Journal of Communications Technology and Electronics. 2014. V.59. 5. P.482-497.

33. Landau L.D., Lifshits E.M. Theory of elasticity (Theoretical physics. V.7). M.: Nauka. 1965.

34. Gurevich A.G. Magnetic resonance in ferrites and antiferromagnetics. M.: Nauka. 1973.

35. Gurevich A., Melkov G. Magnetic oscillations and waves. M.: Nauka-Fizmatlit. 1994.

36. Gilbert T.L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. on Magn. 2004. V.40. 6. P.3443-3449.

37. Antonets I.V., Shavrov V.G., Shcheglov V.I. Waves in multi-layer structures. Part 1. Calculation methods: straight, averaging, matrix. M.: Fizmatlit. 2022.

38. Dwight H.B. Tables of integrals and other mathematical data. New York: The Macmillan Company. 1961.

39. Shavrov V.G., Shcheglov V.I. Magnetostatic and electromagnetic waves in complex structures. M.: Fizmatlit. 2017.

40. Korn G.A., Korn T.M. Mathematical handbook for scientists and engineers. New York. McGraw-Hill Book Company. 1968.

41. Weiss M.T. Microwave and low-frequency vibrations executed by non-stability of resonance in ferrites. Phys.Rev.Lett. 1958. V.1. 7. P.239-243.

42. Vlasov V.S., Ivanov A.P., Shavrov V.G., Shcheglov V.I. The analysis of linear excitation of hypersound vibrations of magnetostriction transducer on the basis of connected oscillators model. Zhurnal Radio electroniki Journal of Radio Electronics. 2014. 10. Available at: http://jre.cplire.ru/jre/nov13/3/text.pdf

43. Vlasov V.S., Ivanov A.P., Shavrov V.G., Shcheglov V.I. The analysis of nonlinear excitation of hypersound vibrations on the basis of connected oscillators model in quadratic approximation. Zhurnal Radio electroniki Journal of Radio Electronics. 2014. 1. Available at: http://jre.cplire.ru/jre/jan14/11/text.pdf

44. Vlasov V.S., Ivanov A.P., Shavrov V.G., Shcheglov V.I. Application of connected oscillators model for the analysis of nonlinear excitation of hypersound in ferrite plate by ferromagnetic resonance. Part 1. Basis equations. Journal of Communications Technology and Electronics. 2015. V.60. 1. P.79.

45. Vlasov V.S., Ivanov A.P., Shavrov V.G., Shcheglov V.I. Application of connected oscillators model for the analysis of nonlinear excitation of hypersound in ferrite plate by ferromagnetic resonance. Part 2. Some nonlinear phenomenon. Journal of Communications Technology and Electronics. 2015. V.60. 3. P.297.

46. Ivanov A.P., Shavrov V.G., Shcheglov V.I. The analysis of auto-modulation vibrations in magnetoelastic medium on the basis of connected magnetic and elastic oscillators. Zhurnal Radio electroniki Journal of Radio Electronics. 2015. 5. Available at: http://jre.cplire.ru/jre/may15/4/text.pdf

47. Ivanov A.P., Shavrov V.G., Shcheglov V.I. The analysis of auto-modulation phenomena in the system of connected magnetic and elastic oscillators on the basis of potential model. Zhurnal Radio electroniki Journal of Radio Electronics. 2015. 6. Available at: http://jre.cplire.ru/jre/jun15/9/text.pdf

48. Shavrov V.G., Shcheglov V.I., Ivanov A.P. Nonlinear vibrations in the task about hypersound excitation. Syktivkar: OOO Komi republican printing-house. 2021.

49. Migulin V.V., Medvedev D.I., Mustel E.P., Parigin V.N. Fundamentals theory of oscillations. M.: Nauka. 1978.

50. Strelkov S.P. Introduction to theory of vibrations. M.: Nauka. 1964.

51. Harkevich A.A. Foundations of radio engineering. M.: Fizmatlit. 2007.

52. Karlov N.V. Kirichenko N.A. Vibrations, waves, structures. M.: Fizmatlit. 2003.

53. Monosov Ya.A. Nonlinear ferromagnetic resonance. M.: Nauka. 1971.

54. Ikola R.J. New Excitation Mechanism for Magnetoacoustic Resonance in YIG. Journ. Appl. Phys. 1965. V.36. 10. P.3260.

55. Monosov Ya.A., Surin V.V., Shcheglov V.I. Excitation of elastic vibrations by nonlinear ferromagnetic resonance. JETP Letters. 1968. V.7. 9. P.315-317.

For citation:

Vlasov V.S., Shaporov V.N., Shavrov V.G., Shcheglov V.I. Elastic resonances in structure: thin magnetic film thick elastic substrate. // Journal of Radio Electronics. 2023. . 11. https://doi.org/10.30898/1684-1719.2023.11.12 (In Russian)