Journal of Radio Electronics. eISSN 1684-1719. 2023. ¹11
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.11.25
THE SECOND MAGNETOELASTIC RESONANCE IN STRUCTURE:
THIN MAGNETIC FILM – THICK ELASTIC SUBSTRATE
V.S. Vlasov 1, V.N. Shaporov 1, V.G. Shavrov 2, V.I. Shcheglov 2
1 Syktyvkar State University
167001, Russia, Syktyvkar, Oktyabrskii prosp., 55
2 Kotelnikov IRE RAS
125009, Russia, Moscow, Mokhovaya str., 11, k. 7
The paper was received October 10, 2023.
Abstract. The task about excitation of connected magnetic and elastic vibrations in flat-parallel structure consisted of normal magnetized thin magnetic film applied on thick nonmagnetic substrate is considered. As a result of estimated task solution the amplitude-frequency characteristics of magnetic and elastic vibrations are found. It is shown that in conditions when the ferromagnetic resonance frequency is higher then own elastic vibration of the structure on the amplitude-frequency characteristics of magnetic vibrations applied the equidistance net of elastic resonances of structure. For the interpretation of observed resonance net it is proposed the model of phase synchronization between initial excitation and elastic wave which experience two passages along the thickness of structure. It is shown that the frequency of maximum elastic vibrations rounding exceeds frequency of maximum magnetization characteristic. The existence of own rounding elastic vibrations characteristic is named the second elastic system resonance. It is investigated the dependence of maximum second resonance characteristic from value of magnetoelastic interaction constant. It is shown that by increasing of this constant the frequency distance between both characteristic maxima increases. As a hypothesis of this increasing it is proposed the analogy with splitting of amplitude-frequency characteristic of system consisted of two connected resonators. It is investigated the amplitude-frequency characteristics magnetic and elastic vibrations in wide frequency region. On the equidistance elastic resonances net amplitude-frequency characteristic it is found the narrow equidistance disposed resonance depressions which are correspond to decreasing of amplitude more then two orders of value. It is shown that the frequency interval between neighbouring depressions is back proportional to distance between point of elastic vibrations registration and surface of substrate opposite to magnetic film. For the interpretation of depressions formation it is proposed the model which takes into account the phase opposition in registration point between wave which goes out of the excitation point and wave which is reflected from the opposite end of structure. Briefly noted some physical analogies of investigated phenomena.
Key words: magnetic film, nonmagnetic substrate, magnetoelastic resonance, connected vibrations.
Financing: The work was carried out within the framework of the state assignment of the V.A. Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences.
Corresponding author: Shcheglov Vladimir Ignatyevich, vshcheg@cplire.ru
References
1. Adam J.D. Analog signal processing with microwave magnetics. // Proc. IEEE. 1988. V.76. ¹3. P.159-170.
2. Ishak W.S. Magnetostatic wave technology: a review. // Proc. IEEE. 1988. V.76. ¹2. P.171-187.
3. Vashkovsky A.V., Stalmakhov V.S., Sharaevsky Ju.P. Magnetostatic waves in microwave electronics. – Saratov: Saratov University. 1993.
4. Adam J.D., Davis L.E., Dionne G.F., Schloemann E.F., Stitzer S.N. Ferrite devices and materials. // IEEE Trans. on Microwave Theory and Techniques. 2002. V.50. ¹3. P.721-737.
5. Serga A.A., Chumak A.V., Hillebrands B. YIG magnonics // J. Phys. D: Appl. Phys. 2010. V.43. P.264002(16).
6. Shavrov V.G., Shcheglov V.I. Magnetostatic waves in nonuniform fields. M.: Fizmatlit. 2016.
7. Shavrov V.G., Shcheglov V.I. Magnetostatic and electromagnetic waves in complex structures. M.: Fizmatlit. 2017.
8. Shavrov V.G., Shcheglov V.I. Spin waves in media with exchange and dissipation. M.: Fizmatlit. 2021.
9. Strauss W. Magnetoelastic properties of yttrium iron garnet ferrite. // In book: Physical Acoustics. V.4. Part.B. Application of physical acoustics in quantum physics and solid state physics. New York and London: Academic Press. 1970. P.241-316.
10. LeCraw R.C., Comstock R.L. Magnetoelastic interactions in ferromagnetic dielectrics. // In book: Physical Acoustics. V.3. Part.B. Lattice dynamics. New York and London: Academic Press. 1965. P.156.
11. Chernov A.I., Kozhaev M.A., Vetoshko P.M., Zvezdin A.K., Belotelov V.I., Dodonov D.V., Prokopov A.R., Shumilov A.G., Shaposhnikov A.N., Berzhanskii V.N. Local probing of magnetic films by optical excitation of magnetostatic waves. // Physics of the Solid State. 2016. V.58. ¹6. P.1128.
12. Vlasov V.S., Golov A.V., Kotov L.N., Shcheglov V.I., Lomonosov A.M., Temnov V.V. The Modern Problems of Ultrafast Magnetoacoustics (Rewiev). // Acoust. Phys. 2022. V.68. ¹1. P.18-47.
13. Beaurepaire E., Merle J.C., Daunois A., Bigot J.Y. Ultrafast spin dynamics in ferromagnetic nickel. // Phys. Rev. Lett. 1996. V.76. ¹22. P.4250.
14. Walowski J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics. // J. Appl. Phys. 2016. V.120. ¹14. P.140901(16).
15. Dreher L., Weiler M., Pernpeintner M., Huebl H., Gross R., Brandt M.S., Goennenwein S.T.B. Surface acoustic wave driven ferromagnetic resonance in nickel thin films: theory and experiment. // Phys. Rev. B. 2012. V.86. ¹13. P.134415(13).
16. Bigot J.V., Vomir M. Ultrafast magnetization dynamics of nanostructures. // Ann. Phys. (Berlin). 2013. V.525. ¹1-2. P.2-30.
17. Thevenard L., Gourdon C., Prieur J.Y., Von Bardeleben H.J., Vincent S., Becerra L., Largeau L., Duquesne J.Y. Surface-acoustic-wave-driven ferromagnetic resonance in (Ga,Mn)(As,P) epilayers. // Phys. Rev. B. 2014. V.90. ¹9. P.094401(8).
18. Jäger J.V., Scherbakov A.V., Glavin B.A., Salasyuk A.S., Campion R.P., Rushforth A.W., Yakovlev D.R., Akimov A.V., Bayer M. Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons. // Phys. Rev. B. 2015. V.92. ¹2. P.020404(5).
19. Sparks M., Tittmann B.R., Mee J.F.. ¹.ewkirk C. Ferromagnetic resonance in epitaxial garnet thin films // JAP. 1969. V.40. ¹3. P.1518.
20. Chen H., De Gasperis P., Marcelli R., Pardavi-Horvath M., McMichael R., Wigen P.E. Wide-band linewidth measurements in yttrium iron garnet films // JAP. 1990. V.67. ¹9. P.5530.
21. Telesnin R.V., Kozlov D.I., Dudorov V.N., Ferromagnetic resonance in epitaxial films Y3Fe5-xGaxO12.. // Phys. Sol. St. 1974. V.16. ¹11. P.3532.
22. Avaeva I.G., Lisovskii F.V., Osika V.A., Shcheglov V.I. Investigation of epitaxial films pf mixed ferrite-garnets by ferromagnetic resonance method. // Phys. Sol. St. 1975. V.17. ¹10. P.3045.
23. Avaeva I.G., Lisovskii F.V., Osika V.A., Shcheglov V.I. Ferromagnetic resonance in epitaxial films of mixed ferrite-garnet. // Journal of Communication Technology and Electronics. 1976. V.21. ¹9. P.1894.
24. Avaeva I.G., Lisovskii F.V., Osika V.A., Shcheglov V.I. Ferromagnetic resonance in epitaxial mixed ferrite-garnet films with cubic anisotropy. // Phys. Sol. St. 1976. V.18. ¹12. P.3694.
25. An K., Litvinenko A.N., Kohno R., Fuad A.A., Naletov V.V., Vila L., Ebels U., De Loubens G., Hurdequint H., Beaulieu N., Ben Youssef J., Vukadinovic N., Bauer G.E.W., Slavin A.N., Tiberkevich V.S., Klein O. Coherent long-rare transfer of angular momentum between magnon Kittel modes by phonons. // Phys. Rev. B. 2020. V.101. ¹6. P.060407(6)
26. Kuzmichev A.N., Vetoshko P.M., Knyazev G.A., Belotelpv V.I,, Bunkov Yu.M. Features of the interaction of a magnon Bose-Einstein condensate with acoustic modes of Yttrium Iron Garnet films. // JETP Letters. 2020. V.112. ¹11. P.710-714.
27. Polulyakh S.N., Bershansky V.N., Semuk T.Yu., Belotelov D.I., Vetoshko P.M., Popov V.V., Shaposhnikov A.N., Chernov A.I. // Modulation of magnetoelastic connection by ferromagnetic resonance in ferrite-garnet films. // Technical Physics. 2021. V.91. ¹7. P.1124-1131.
28. Polulyakh S.N., Bershansky V.N., Semuk T.Yu., Belotelov D.I., Vetoshko P.M., Popov V.V., Shaposhnikov A.N., Shumilov A.G., Chernov A.I. Ferromagnetic resonance and elastic vibrations in epitaxial yttrium ferrite-garnet films. // JETP. 2021. V.159. ¹2. P.307-314.
29. Gulyaev Yu.V., Zilberman P.E., Kazakov G.T., Sysoev V.G., Tikhonov V.V., Filimonov Yu.A., Nam B.P., Khe A.S. Observation of fast magnetoelastic waves in thin yttrium-iron garnet wafers and epitaxial films. // JETP Letters. 1981. V.34. ¹11. P.477-481.
30. Kazakov G.T., Tikhonov V.V., Zilberman P.E., // Phys.Tv.Tela. 1983/ V.25. ¹8. P.2307-2312.
31. Andreev A.S., Zilberman P.E., Kravchenko V.B., Ogrin Yu.F., Temiryazev A.G., Filimonova L.M. // Tech.Phys.Letters. 1984. V.10. ¹2. P.90-94.
32. Khivintsev Yu.V., Sakharov V.K., Visotskii S.L., Filimonov Yu.A., Stognii A.I., Nikitov S.A. Magnetoelastic Waves in submicron Yttrium-Iron-Garnet films manufactured by means of ion-beam sputtering onto Gadolinium-Gallium-Garnet substrates. Technical Physics. 2018. V.63. ¹7. P.1029-1035.
33. Streib S., Keshtgar H., Bauer G.E.W. Damping of magnetization dynamics by phonon pumping. // Phys.Rev.Lett. 2018. V.121. ¹2. P.027202(6).
34. Vetoshko P.M., Vlasov V.S., Shavrov V.G., Shcheglov V.I. Effect of elastic resonances of substrate on ferromagnetic resonance in yttrium iron garnet films. // Journal of Communication Technology and Electronics. 2023. V.68. ¹2. P.156-163.
35. Tihonov A.N., Samarsky A.A. Equations of mathematical physics. M.: Nauka. 1972.
36. Vlasov V.S., Shaporov V.N., Shavrov V.G., Shcheglov V.I. Elastic resonances in structure: thin magnetic film – thick elastic substrate. // Journal of Radio Electronics. – 2023. – ¹. 11. https://doi.org/10.30898/1684-1719.2023.11.25 (In Russian)
37. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound in a ferrite plate under the ferromagnetic-resonance conditions. // Journal of Communications Technology and Electronics. 2009. V.54. ¹7. P.821.
38. Vlasov V.S., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound in double-slides ferrite structure. // Zhurnal Radio electroniki – Journal of Radio Electronics. 2013. ¹2. Available at: http://jre.cplire.ru/jre/feb13/10/text.pdf (In Russian).
39. Vlasov V.S., Shavrov V.G., Shcheglov V.I. Combinational excitation of hypersound in double-slides ferrite structure. // Book of papers of International conference «Electromagnetic field and materials». M.: NIU MEI. 2013. P.164.
40. Vlasov V.S., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound in double-slides ferrite structure. // Journal of Communications Technology and Electronics. 2014. V.59. ¹5. P.482.
41. Korn G.A., Korn T.M. Mathematical handbook for scientists and engineers. New York. McGraw-Hill Book Company. 1968.
42. Migulin V.V., Medvedev D.I., Mustel E.P., Parigin V.N. Fundamentals theory of oscillations. M.: Nauka. 1978.
43. Harkevich A.A. Foundations of radio engineering. M.: Fizmatlit. 2007.
44. Gonorovsky I.S. Radio engineering circuits and signals. M.: Soviet Radio. 1964.
For citation:
Vlasov V.S., Shaporov V.N., Shavrov V.G., Shcheglov V.I. The second magnetoelastic resonance in structure: thin magnetic film – thick elastic substrate. // Journal of Radio Electronics. – 2023. – ¹. 11. https://doi.org/10.30898/1684-1719.2023.11.25 (In Russian)