Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹11
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.11.11
DESIGN FUNDAMENTALS OF HIGH TEMPERATURE
SILICON CARBIDE OPERATIONAL AMPLIFIERS
IN THE FREELY RELATED ENVIRONMENTS MicroCap AND LTspice
V.E. Chumakov1, I.V. Frolov2, D.V. Kleimenkin1, N.N. Prokopenko1
1Don State Technical University
344000, Russia, Rostov-on-Don, Gagarin Square, 1
2Ulyanovsk Branch of the Kotelnikov Institute of Radioengineering and Electronics of RAS
432071, Russia, Ulyanovsk, Goncharova st., 48/2
The paper was received July 15, 2024.
Abstract. To simulate analog circuits in the freely available MicroCap and LTspice environments at temperatures up to 452 °C, template models of SiC transistors have been developed using the template modeling technique, in which the constant parameters of the model are replaced by fractional-rational functions, allowing a more accurate description of the physical processes in the JFET without violating the character their changes. Instructions have been developed for testing SiC JFet transistor models in LTspice and MicroCap environments. The purpose of the work is to study circuit solutions for high-temperature basic analog functional units, implemented on the basis of silicon carbide field-effect transistors using developed template models. The parameters of SiC two-terminal reference current circuits and dynamic loads of amplification stages of operational amplifiers with different numbers of series-connected SiC JFets, which can be used in high-temperature analog circuitry, are presented. The main characteristics of SiC differential stages and the simplest SiC operational amplifiers with paraphase output based on them were studied at temperatures of 25 °C and 452 °C. The results obtained are recommended for use in the design of high-temperature operational and instrumental amplifiers used in space instrumentation, deep well drilling equipment, automotive industry, nuclear reactors, etc. for processing signals from sensors of physical quantities and converting radio signals.
Key words: silicon carbide, template model, operational amplifier, differential stage, reference current source, dynamic load.
Financing: The research has been carried out at the expense of the Grant of the Russian Science Foundation No. 23-79-10069, https://rscf.ru/en/project/23-79-10069/.
Corresponding author: Frolov Ilya Vladimirovich, ilya-frolov88@mail.ru
References
1. Lien W. C. Harsh environment silicon carbide UV sensor and junction Field-Effect transistor. – University of California, Berkeley, 2013.
2. Vert A. et al. Silicon carbide high temperature operational amplifier //Additional Papers and Presentations. – 2012. – V. 2012. – ¹. HITEC. – P. 000378-000383. https://doi.org/10.4071/HITEC-THP12
3. Bhuyan S. A. Design of a High Performance Silicon Carbide CMOS Operational Amplifier. – University of Arkansas, 2014.
4. Yang J. et al. An all silicon carbide high temperature (450+° C) high voltage gain AC coupled differential amplifier //Materials Science Forum. – Trans Tech Publications Ltd, 2011. – V. 679. – P. 746-749. https://doi.org/10.4028/www.scientific.net/MSF.679-680.746
5. Stum Z. et al. 300° C silicon carbide integrated circuits //Materials Science Forum. – Trans Tech Publications Ltd, 2011. – V. 679. – P. 730-733. https://doi.org/10.4028/www.scientific.net/MSF.679-680.730
6. Clark D. T. et al. High temperature silicon carbide CMOS integrated circuits //Materials Science Forum. – Trans Tech Publications Ltd, 2011. – Ò. 679. – Ñ. 726-729. https://doi.org/10.4028/www.scientific.net/MSF.679-680.726
7. Neudeck P. G. et al. Prolonged 500 C operation of 6H-SiC JFET integrated circuitry //Materials Science Forum. – Trans Tech Publications Ltd, 2009. – V. 615. – P. 929-932. https://doi.org/10.4028/www.scientific.net/MSF.615-617.929
8. Vert A. V., Andarawis E. A., Chen C. P. Reliability of Silicon Carbide Integrated Circuits at 300° C //Materials Science Forum. – Trans Tech Publications Ltd, 2012. – V. 717. – P. 1265-1268. https://doi.org/10.4028/www.scientific.net/MSF.717-720.1265
9. Kashyap A. S., Chen C. P., Tilak V. Compact modeling of silicon carbide lateral MOSFETs for extreme environment integrated circuits //2011 International Semiconductor Device Research Symposium (ISDRS). – IEEE, 2011. – P. 1-2. https://doi.org/10.1109/ISDRS.2011.6135185
10. Girardi M. A., Peterson K. A., Vianco P. T. Thick Film Process Characterization for Thin Film Metallized LTCC //Journal of Microelectronics and Electronic Packaging. – 2016. – V. 13. – ¹ 3. – P. 136-142. https://doi.org/10.4071/imaps.512
11. Patil A. C. et al. Fully-monolithic, 600 C differential amplifiers in 6H-SiC JFET IC technology //2009 IEEE Custom Integrated Circuits Conference. – IEEE, 2009. – P. 73-76. https://doi.org/10.1109/CICC.2009.5280889
12. Hedayati R. et al. A monolithic, 500 C operational amplifier in 4H-SiC bipolar technology //IEEE Electron Device Letters. – 2014. – V. 35. – ¹ 7. – P. 693-695. https://doi.org/10.1109/LED.2014.2322335
13. Patil A. C. Silicon carbide JFET integrated circuit technology for high-temperature sensors : Thesis for PhD. – Case Western Reserve University, 2009.
14. Lauenstein J. M. et al. Room temperature radiation testing of a 500 C durable 4H-SiC JFET integrated circuit technology //2019 IEEE Radiation Effects Data Workshop. – IEEE, 2019. – P. 1-7. https://doi.org/10.1109/REDW.2019.8906528
15. Patil A. C. et al. 6H-SiC JFETs for 450 °C Differential Sensing Applications //Journal of microelectromechanical systems. – 2009. – V. 18. – ¹ 4. – P. 950-961. https://doi.org/10.1109/JMEMS.2009.2021831
16. Mudholkar, M. Characterization and Modeling of 4H-SiC Low Voltage MOSFETs and Power MOSFETs : Thesis for PhD. – University of Arkansas, Fayetteville, 2012.
17. Bergmann J., ten Have A. High temperature operational amplifier with low offset voltage //Proceedings of ISSE'95-International Symposium on Signals, Systems and Electronics. – IEEE, 1995. – P. 451-454. https://doi.org/10.1109/ISSSE.1995.498029
18. Habib H., Wright N. G., Horsfall A. B. Complementary JFET Logic for Low-Power Applications in Extreme Environments //Materials Science Forum. – Trans Tech Publications Ltd, 2013. – V. 740. – P. 1052-1055. https://doi.org/10.4028/www.scientific.net/MSF.740-742.1052
19. Allen S. T., Palmour J. W., Alcorn T. S. Silicon carbide metal-semiconductor field effect transistors : pat. 6686616 USA. – 2004.
20. Tomana M. et al. A hybrid silicon carbide differential amplifier for 350 degrees C operation //IEEE transactions on components, hybrids, and manufacturing technology. – 1993. – V. 16. – ¹ 5. – P. 536-542. https://doi.org/10.1109/33.239885
21. Jouha W. et al. Silicon carbide power MOSFET model: An accurate parameter extraction method based on the levenberg–marquardt algorithm //IEEE Transactions on Power electronics. – 2018. – V. 33. – ¹ 11. – P. 9130-9133. https://doi.org/10.1109/TPEL.2018.2822939
22. Áèðþêîâ Â. Í. è äð. Øàáëîííàÿ ìîäåëü êîìïëåìåíòàðíûõ ïîëåâûõ òðàíçèñòîðîâ ñ óïðàâëÿþùèì pn-ïåðåõîäîì [Template model of complementary field-effect transistors with a control pn junction] //Æóðíàë ðàäèîýëåêòðîíèêè. – 2019. – ¹. 8. – Ñ. 10-10. https://doi.org/10.30898/1684-1719.2019.8.5
For citation:
Chumakov V.E., Frolov I.V., Kleimenkin D.V., Prokopenko N.N. Design fundamentals of high temperature silicon carbide operational amplifiers in the freely related environments MicroCap and LTspice. // Journal of Radio Electronics. – 2024. – ¹. 11. https://doi.org/10.30898/1684-1719.2024.11.11 (In Russian)