Journal of Radio Electronics. eISSN 1684-1719. 2024. №11

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.11.17

 

 

 

ASSESSMENT OF THE IMPACT OF MANUFACTURING DEFECTS

ON THE CHARACTERISTICS OF THE COUPLED MICROSTRIP LINE

 

Kuzmin N.O., Murmansky M.S., Zhechev Y.S.

 

Tomsk State University of Control Systems and Radioelectronics

634050, Tomsk, Lenin pr. 40.

 

The paper was received August 8, 2024.

 

Abstract. The influence of manufacturing defects on the characteristics of the coupled microstrip line has been evaluated. The results of quasi-static analysis showed that the values of matrices C and L change when the etching time and εr values change, which in turn affects the frequency and time characteristics of transmission lines. Electrodynamic analysis reveals that the linearity of the transmission coefficient changes depending on the shape of the conductors. It is shown that when the shape of the conductors of the coupled transmission lines changes with increasing etching time, the resonances shift towards higher frequencies. Analysis of the obtained matrices C and L revealed that with increasing etching time, the eigenvalues of C and Z decrease, while L increases. This is due to the decrease in the cross-sectional area of the conductor as well as the change in the εr values of the materials. It is found that an increase in the etching time leads to a change in the voltage waveform at the far end of the active conductor. It is also found that the conductor shape with the best performance in terms of noise suppression is shape 3. The structure with rectangular-shaped conductors has the lowest values of linear capacitance, which affects the characteristics of the coupled microstrip line.

Key words: quasi-static modeling, relative dielectric permittivity, etching, electrodynamic modeling.

Financing: The study was conducted as part of the project FEWM-2024-0005 of the Ministry of Education and Science of Russia.

Corresponding author: Kuzmin Nikita Olegovich kuzjmin.nikita23@gmail.com

 

References

1. Paul C.R., Scully R.C., Steffka M.A. Introduction to electromagnetic compatibility. John Wiley & Sons, Inc., 2022.

2. Violette N. Electromagnetic compatibility handbook. – Springer, 2013.

3. Evangelista J. et al. Radiated and Conducted EMI by RF Fields at Hospital Environment //2021 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). – IEEE, 2021. – С. 1-4.

4. Wei J. et al. NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems // Expert Systems with Applications. – 2020. – Т. 158. – С. 113504.

5. Данилова Е.А. Классификация дефектов печатных плат // Труды международного симпозиума «Надежность и Качество». – 2013. – Т. 1. – С. 325-328.

6. ГОСТ Р 56251 – 2014. Платы печатные. Классификация дефектов. – М.: СТАНДАРТИНФОРМ. 2014. С. 107.

7. Шихов С. Печатные платы с повышенными требованиями к надежности. Вопросы проектирования // Электроника: Наука, технология, бизнес. – 2013. – №. 2. – С. 164-169.

8. Уайтт К., Рентюк В. Особенности конструирования печатных плат с выполнением требований по ЭМС // Компоненты и технологии. – 2019. – №. 6. – С. 121-128.

9. Кузьмин Н.О., Жечев Е.С. Оценка влияния параметров травления на характеристики однопроводных и многопроводных линий передачи // Журнал радиоэлектроники. – 2023. – №. 11.

10. Nikita K., Zhechev Y. Influence of Etching Time on Per-Unit-Length Parameters of Microstrip Lines // 2022 International Siberian Conference on Control and Communications (SIBCON). – IEEE, 2022. – С. 1-4.

11. Мурманский, М.С. Исследование влияния изменения относительной диэлектрической проницаемости подложки микрополоскового полосового фильтра на его частотные характеристики // Перспективы развития фундаментальных наук : сборник научных трудов XX Международной конференции студентов, аспирантов и молодых ученых, Томск, 25–28 апреля 2023 года / Национальный исследовательский Томский политехнический университет. Том 7. 2023. – С. 94-96.

12. Djordjevic A.R. et al. Wideband frequency-domain characterization of FR-4 and time-domain causality // IEEE Transactions on electromagnetic compatibility. – 2001. – Т. 43. – №. 4. – С. 662-667.

13. AD1000: High Dielectric Constant Laminate // RF Globalnet. URL: https://www.rfglobalnet.com/doc/high-dielectric-constant-substrate-ad1000-0002 

14. Das P., Mandal K. Multiband Reflection and Transmission mode Linear to Circular Polarizer integrated Microstrip Patch Antenna // 2020 International Symposium on Antennas & Propagation (APSYM). – IEEE, 2020. – С. 7-10.

15. Bielik T., Adamec B., Hottmar V. Determination of FR-4 dielectric constant for design of microstrip band-stop filter purposes // 2019 29th International Conference Radioelektronika. – IEEE, 2019. – С. 1-6.

16. ГОСТ IEC61188-1-2–2013. Печатные платы и печатные узлы проектирование и применение часть1-2. 2014. C.39.

17. Галецкий Ф. Производство печатных плат. Современные технологии // Электроника: Наука, технология, бизнес. – 1998. – №. 2. – С. 43-46.

18. Tang Y. et al. Study on Wet Chemical Etching of Flexible Printed Circuit Board with 16-μ m Line Pitch // Journal of Electronic Materials. – 2023. – Т. 52. – №. 6. – С. 4030-4036.

19. Noma H., Nakanishi T. Etching process analysis based on etchant flow for high-density build-up substrate // Proceedings of 6th Electronics Packaging Technology Conference (EPTC 2004) (IEEE Cat. No. 04EX971). – IEEE, 2004. – С. 289-293.

20. Флеров В.Н. Химическая технология в производстве радиоэлекронных деталей. – Радио и связь, 1988.

21. Куксенко С.П. и др. Новые возможности системы моделирования электромагнитной совместимости TALGAT // Доклады Томского государственного университета систем управления и радиоэлектроники. – 2015. – №. 2 (36). – С. 45-50.

22. Baum C.E. Norms and eigenvector norms // Mathematics Notes. – 1979. – Т. 63. – С. 1-42.

For citation:

Kuzmin N.O., Murmansky M.S., Zhechev E.S. Assessment of the impact of manufacturing defects on the characteristics of the coupled microstrip line. // Journal of Radio Electronics. – 2024. – №. 11. https://doi.org/10.30898/1684-1719.2024.11.17 (In Russian)