Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹11
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.11.25
ON THE PROPAGATION OF PIECEWISE HOLOMORPHIC SIGNALS
THROUGH A COSMIC MASER
N.S. Bukhman
Samara State Technical University
443100, Russia, Samara, Molodogvardeyskaya str., 244
The paper was received July 16, 2024.
Abstract. The propagation of piecewise holomorphic (discontinuous) signals through the region of selective (frequency) amplification (cosmic maser) has been studied. It is shown that in this case, an amplified signal is excited at the maser radiation frequency compared to the original one, even in the case when the carrier frequency of the piecewise holomorphic signal differs by several orders of magnitude from the maser radiation frequency. Typical signal intensity gain values for a typical OH maser are about 40 dB. This makes it possible to consider space masers as natural "detectors" of radio and video signals of artificial origin.
Key words: piecewise holomorphic signal, discontinuous signal, artificial signal, space maser, extraterrestrial civilizations.
Corresponding author: N.S. Bukhman, e-mail nik3142@yandex.ru
References
1. Vinogradova M. B., Rudenko O. V., Suhorukov A. P. Teoriya voln. – 1979.
2. Vaĭnshteĭn L. A. Propagation of pulses //Soviet Physics Uspekhi. – 1976. – Ò. 19. – ¹. 2. – Ñ. 189. https://doi.org/10.1070/PU1976v019n02ABEH005138
3. Bukhman N. S. Absorption of a Narrow-Band Signal in a Dispersive Medium //Radiophysics and Quantum Electronics. – 2023. – Ò. 65. – ¹. 12. – Ñ. 897-910. https://doi.org/10.52452/00213462_2022_65_12_988
4. Bukhman N. S. On the principle of causality and superluminal signal propagation velocities //Journal of Communications Technology and Electronics. – 2021. – Ò. 66. – Ñ. 227-241. https://doi.org/10.1134/S1064226921030049
5. Il'in V. A., Poznyak E. G. Osnovy matematicheskogo analiza. – Fizmatlit, 2005.
6. Strel'NitskiĬ V. S. Cosmic masers //Soviet Physics Uspekhi. – 1975. – Ò. 17. – ¹. 4. – Ñ. 507. https://doi.org/10.1070/PU1975v017n04ABEH004424
7. Townes C. H. Astronomical masers and lasers //Quantum Electronics. – 1997. – Ò. 27. – ¹. 12. – Ñ. 1031. https://doi.org/10.1070/QE1997v027n12ABEH001104
8. Varshalovich D. A. Mazernyj effekt v kosmose // Fizika kosmosa: Malen'kaya enciklopediya / Pod red. R. A. Syunyaeva, Yu. N. Drozhzhina-Labinskogo, Ya. B. Zel'dovicha i dr.. — 2-e izd. — M.: Sovetskaya enciklopediya, 1986. — S. 376—378.
9. Dickinson D. F. Cosmic Masers// Scientific American. – 1978. – V. 238. – ¹ 6. – P. 68. https://doi.org/10.3367/UFNr.0128.197906e.0345
10. Smirnov V. I. Kurs vysshej matematiki. Tom 2 //BHV–Peterburg.–624 s. – 1974.
11. Bukhman N. S. On the distortion of a wave packet propagating in an amplifying medium //Quantum Electronics. – 2004. – Ò. 34. – ¹. 4. – Ñ. 299. https://doi.org/10.1070/QE2004v034n04ABEH002670
12. Karlov N. V. Lekcii po kvantovoj elektronike. – M.: Nauka, 1988.
13. Sobel'man I. I. Vvedenie v teoriyu atomnyh spektrov. – Ripol Klassik, 2013.
14. García T. T. Voigt profile fitting to quasar absorption lines: an analytic approximation to the Voigt–Hjerting function //Monthly Notices of the Royal Astronomical Society. – 2006. – Ò. 369. – ¹. 4. – Ñ. 2025-2035. https://doi.org/10.1111/j.1365-2966.2006.10450.x
15. Abramowitz M., Stegun I. A. (ed.). Handbook of mathematical functions with formulas, graphs, and mathematical tables. – US Government printing office, 1968. – Ò. 55.
16. Bukhman N. S., Kulikova A. V. The character of the dispersion of the refractive index near an isolated spectral line //Journal of Communications Technology and Electronics. – 2015. – Ò. 60. – Ñ. 502-506. https://doi.org/10.1134/S1064226915030080
17. Bukhman N. S. On the normalisation of the observed spectral gain line profile with increasing optical thickness of a substance layer //Quantum Electronics. – 2000. – Ò. 30. – ¹. 9. – Ñ. 799. https://doi.org/10.1070/QE2000v030n09ABEH001815
18. Wang L. J., Kuzmich A., Dogariu A. Gain-assisted superluminal light propagation //Nature. – 2000. – Ò. 406. – ¹. 6793. – Ñ. 277-279. https://doi.org/10.1038/35018520
19. Talukder M. A. I., Amagishi Y., Tomita M. Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium //Physical Review Letters. – 2001. – Ò. 86. – ¹. 16. – Ñ. 3546. https://doi.org/10.1103/PhysRevLett.86.3546
20. Dogariu A., Kuzmich A., Wang L. J. Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity //Physical Review A. – 2001. – Ò. 63. – ¹. 5. – Ñ. 053806. https://doi.org/10.1103/PhysRevA.63.053806
21. Akulshin A. M., Cimmino A., Opat G. I. Negative group velocity of a light pulse in cesium vapour //Quantum Electronics. – 2002. – Ò. 32. – ¹. 7. – Ñ. 567. https://doi.org/10.1070/QE2002v032n07ABEH002249
22. Macke B., Ségard B. Propagation of light-pulses at a negative group-velocity //The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics. – 2003. – Ò. 23. – Ñ. 125-141. https://doi.org/10.1140/epjd/e2003-00022-0
23. Akulshin A. M. et al. Pulses of" fast light," the signal velocity, and giant Kerr nonlinearity //LASER PHYSICS-LAWRENCE-. – 2005. – Ò. 15. – ¹. 9. – Ñ. 1252.
24. Zolotovskiĭ I. O. , Sementsov D. I. Velocity of the Maximum of the Envelope of a Frequency-Modulated Gaussian Pulse in an Amplifying Nonlinear Medium // Optics and Spectroscopy . – 2005. – V. 99. – No 1. – P. 81. https://doi.org/10.1134/1.1999897
25. Zolotovskiĭ I. O., Sementsov D. I. Velocity of the pulse envelope in tunnel-coupled optical waveguides with strongly differing parameters //Optics and spectroscopy. – 2006. – Ò. 101. – Ñ. 114-117. https://doi.org/10.1134/S0030400X06070204
26. Macke B., Ségard B. From fast to slow light in a resonantly driven absorbing medium //Physical Review A—Atomic, Molecular, and Optical Physics. – 2010. – Ò. 82. – ¹. 2. – Ñ. 023816. https://doi.org/10.1103/PhysRevA.82.023816
27. Akulshin A. M., McLean R. J. Fast light in atomic media //Journal of Optics. – 2010. – Ò. 12. – ¹. 10. – Ñ. 104001.
28. Malykin G. B., Romanets E. A. Superluminal motion //Optics and Spectroscopy. – 2012. – Ò. 112. – Ñ. 920-934. https://doi.org/10.1134/S0030400X12040145
29. Zolotovskii I. O., Minvaliev R. N., Sementsov D. I. Dynamics of frequency-modulated wave packets in optical guides with complex-valued material parameters //Physics-Uspekhi. – 2013. – Ò. 56. – ¹. 12. – Ñ. 1245.. https://doi.org/10.3367/UFNe.0183.201312e.1353
30. Macke B., Ségard B. Simultaneous slow and fast light involving the Faraday effect //Physical Review A. – 2016. – Ò. 94. – ¹. 4. – Ñ. 043801. https://doi.org/10.1103/PhysRevA.94.043801
31. Macke B., Ségard B. Optical precursors with self-induced transparency //Physical Review A—Atomic, Molecular, and Optical Physics. – 2010. – Ò. 81. – ¹. 1. – Ñ. 015803.
32. Macke B., Ségard B. Optical precursors in transparent media //Physical Review A—Atomic, Molecular, and Optical Physics. – 2009. – Ò. 80. – ¹. 1. – Ñ. 011803.
33. Boyd and R. W., Gauthier D. J. " Slow''and" fasf'light // Progress in Optics. – 2002. – V. 43. – P. 497.
34. Macke B., Ségard B. Simple asymptotic forms for Sommerfeld and Brillouin precursors //Physical Review A—Atomic, Molecular, and Optical Physics. – 2012. – Ò. 86. – ¹. 1. – Ñ. 013837. https://doi.org/10.1103/PhysRevA.86.013837
35. Ravelo B. Investigation on microwave negative group delay circuit //Electromagnetics. – 2011. – Ò. 31. – ¹. 8. – Ñ. 537-549. https://doi.org/10.1080/02726343.2011.621106
36. Macke B., Ségard B. // Opt. Commun. 2008. V. 281. ¹ 1. P. 12-17. https://doi.org/10.1016/j.optcom.2007.09.007
37. Sommerfeld A. Über die Fortpflanzung des Lichtes in dispergierenden Medien //Annalen der Physik. – 1914. – Ò. 349. – ¹. 10. – Ñ. 177-202.
38. Brillouin L. Über die Fortpflanzung des Lichtes in dispergierenden Medien //Annalen der Physik. – 1914. – Ò. 349. – ¹. 10. – Ñ. 203-240.
39. Aaviksoo J., Kuhl J., Ploog K. Observation of optical precursors at pulse propagation in GaAs //Physical Review A. – 1991. – Ò. 44. – ¹. 9. – Ñ. R5353. https://doi.org/10.1103/PhysRevA.44.R5353
40. Österberg U., Andersson D., Lisak M. On precursor propagation in linear dielectrics //Optics communications. – 2007. – Ò. 277. – ¹. 1. – Ñ. 5-13. https://doi.org/10.1016/j.optcom.2007.04.050
41. Tanaka H. et al. Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor //Physical Review A. – 2003. – Ò. 68. – ¹. 5. – Ñ. 053801. https://doi.org/10.1103/PhysRevA.68.053801
42. Du S. et al. Observation of optical precursors at the biphoton level //Optics letters. – 2008. – Ò. 33. – ¹. 18. – Ñ. 2149-2151. https://doi.org/10.1364/OL.33.002149
43. Macke B., Ségard B. Brillouin precursors in Debye media //Physical Review A. – 2015. – Ò. 91. – ¹. 5. – Ñ. 053814. https://doi.org/10.1103/PhysRevA.91.053814
44. Macke B., Ségard B. On-resonance material fast light //Physical Review A. – 2018. – Ò. 97. – ¹. 6. – Ñ. 063830. https://doi.org/10.1103/PhysRevA.80.011803
For citation:
Bukhman N.S. On the Propagation of Piecewise Holomorphic Signals Through a Cosmic Maser. // Journal of Radio Electronics. – 2024. – ¹. 11. https://doi.org/10.30898/1684-1719.2024.11.25 (In Russian)