Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹11
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.11.29
EFFECT OF irregular TERRAIN
ON THE GROUND WAVE FIELD AT 10 MHZ
M.G. Dembelov, S.N. Balkhaev, Yu.B. Bashkuev
Institute of Physical Materials Science of the RAS
670047, Russia, Ulan-Ude, Sakhyanova str., 6
The paper was received November, 8, 2024.
Abstract. The propagation of the ground wave field over a smooth geometrically irregular terrain is considered. The calculations of the modulus of the ground wave field attenuation function over model and real radio paths are presented. The field strength measurements over irregular terrain at a frequency of 10 MHz are performed. The attenuation function calculations on a relief path are performed using the Hufford’s integral equation. The numerical solution of the integral equation is applicable to relief paths with elevation differences commensurate with the wavelength. Comparison of the calculations with measurements on a real mountainous path at a frequency of 10 MHz showed satisfactory agreement of the results. It is shown that the applicability of the integral equation method for calculating the attenuation function is due to the location of the geometric inhomogeneity from the transmitter at a distance of no closer than five integration steps.
Key words: Earth’s wave field, relief of the radio path, attenuation function, surface impedance.
Financing: The work was carried out within the framework of the state assignment of the Institute of Physical Materials Science SB RAS on topic No. 0270-2024-0008 “Development of radiophysical methods for studying the dynamics of the surface of land, water bodies and the atmosphere of the Earth in the ELF-VLF-LF-MF and microwave ranges of radio waves”.
Corresponding author: Dembelov Mikhail Georgievich, mdembelov@mail.ru
References
1. Sommerfeld A. Über die Ausbreitung der Wellen in der drahtlosen Telegraphie //Annalen der Physik. – 1926. – Vol. 386, – No. 25. – P. 1135-1153.
2. Weyl H. Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter //Annalen der Physik. – 1919. – Vol. 365, – No. 21. – P. 481-500.
3. Fok V.A. Problemy difraktsii i rasprostraneniya ehlektromagnitnykh voln. – M: Sovetskoe Radio, 1970. 517 s.
4. Watson G.N. The diffraction of electric waves by the earth //Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. – 1918. – Vol. 95, – No. 666. – P. 83-99.
5. Bremmer H. Applications of operational calculus to ground-wave propagation, particularly for long waves //IRE Transactions on Antennas and Propagation. – 1958. – Vol. 6. – No. 3. – P. 267-272.
6. Feinberg E.L. Rasprostranenie radiovoln vdol' zemnoi poverkhnosti. – AN SSSR, 1961. 546 s.
7. Makarov G.I., Novikov V.V., Rybachek S.T. Rasprostranenie ehlektromagnitnykh voln nad zemnoi poverkhnost'yu. – Nauka, 1991. 196 s.
8. Wait J.R. Electromagnetic waves in stratified media. – Pergamon Press, 1970.
9. Bashkuev YU.B., Khaptanov V.B., Dembelov M.G. Ehksperimental'noe dokazatel'stvo sushchestvovaniya poverkhnostnoi ehlektromagnitnoi volny //Pis'ma v Zhurnal tekhnicheskoi fiziki. – 2010. – T. 36. – ¹. 3. – S. 88-95.
10. Bashkuev YU.B., Dembelov M.G., Khaptanov V.B. Poverkhnostnaya ehlektromagnitnaya volna nad sil'noinduktivnoi sredoi led-solenaya voda //Izvestiya vysshikh uchebnykh zavedenii. Radiofizika. – 2021. – T. 64. – ¹ 8-9. – S. 611-615.
11. Hufford G.A. An integral equation approach to the problem of wave propagation over an irregular surface //Quarterly of applied mathematics. – 1952. – Vol. 9, – No. 4. – P. 391-404.
12. Johler J.R. Loran-D phase corrections over inhomogeneous, irregular terrain. – US Department of Commerce, Environmental Science Services Administration, Institutes for Environmental Research, Institute for Telecommunication Sciences, 1967. – Vol. 52.
13. Proskurin E.P. i dr. Rasprostranenie radiovoln nad ehlektricheski i geometricheski neodnorodnymi trassami //Problemy difraktsii i rasprostraneniya voln. -L.: Izd-vo LGU. – 1981. – ¹. 18. – S. 171-183.
14. Wang D.D. et al. Hybrid FDTD–PE method for Loran‐C ASF prediction with near‐source complex topography //IET Microwaves, Antennas & Propagation. – 2020. – Vol. 14, – No. 2. – P. 171-176.
15. Liu J. et al. An effective CFS-PML implementation for cylindrical coordinate FDTD method //IEEE Microwave and Wireless Components Letters. – 2012. – Vol. 22, – No. 6. – P. 300-302.
16. Zhou L. et al. LF ground-wave propagation over irregular terrain //IEEE Transactions on antennas and propagation. – 2011. – Vol. 59, – No. 4. – P. 1254-1260.
17. Bashkuev YU.B., Dembelov M.G. Modelirovanie rasprostraneniya DV-, SV-, KV-radiovoln nad pokrytym l'dom morem //Tekhnika radiosvyazi. – 2016. – ¹. 1. – S. 89-101.
For citation:
Dembelov M.G., Balkhaev S.N., Bashkuev Yu.B. Effect of irregular terrain on the ground wave field at 10 mhz. // Journal of Radio Electronics. – 2024. – ¹. 11. https://doi.org/10.30898/1684-1719.2024.11.30 (In Russian)