Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹11

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.11.30  

 

 

 

BOLOMETERS WITH SUSPENDED ABSORBERS

 

Ì.À. Tarasov1, À.À. Gunbina1,2, À.Ì. Chekushkin1, R.À. Yusupov1,
R
.Ê. Kozulin1, Ì.Yu. Fominsky1

 

1 Kotelnikov IRE RAS,
125009, Russia, Moscow, Mokhovaya str. 11, b.7

2 A.V. Gaponov-Grekhov Institute of Applied Physics RAS
603950, Russia, Nizhni Novgorod, Ylyanova str., 46

 

The paper was received October 29, 2024.

 

Abstract. A technology for manufacturing suspended bridges to improve the performance of superconducting micro- and nanodevices, sensors and electronic coolers is described. Samples of bolometers and electron coolers of the superconductor-insulator-normal metal-insulator-superconductor (SINIS) structure have been fabricated, in which the strip of normal metal does not touch the substrate, but hangs between the banks of superconducting aluminum. The fabrication technology involves isotropic chemical etching of aluminum and critical point drying, which allows the superconductor layer under the normal bridge to be removed and prevents the bridge from sagging and sticking to the substrate. The current-voltage characteristics of such devices were measured at a temperature of 0.3 K.

Key words: bolometers, superconducting tunnel junctions, critical point drying, electron cooling, suspended bridges.

Financing: The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation under grant 075-15-2024-482.

Corresponding author: Mikhail Tarasov tarasov@hitech.cplire.ru

 

References

1. Tarasov M. et al. Microwave SINIS Detectors //Applied Sciences. – 2022. – Ò. 12. – ¹. 20. – Ñ. 10525.

2. Tarasov M. et al. Electrical and optical properties of a bolometer with a suspended absorber and tunneling-current thermometers //Applied Physics Letters. – 2017. – Ò. 110. – ¹. 24.

3. Tarasov M. A. et al. Cryogenic Mimim and Simis Microwave Detectors //2020 7th All-Russian Microwave Conference (RMC). – IEEE, 2020. – Ñ. 25-27.

4. Giazotto F. et al. Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications //Reviews of Modern Physics. – 2006. – Ò. 78. – ¹. 1. – Ñ. 217-274.

5. Ullom J. N. Physics and applications of NIS junctions //AIP Conference Proceedings. – American Institute of Physics, 2002. – Ò. 605. – ¹. 1. – Ñ. 135-140.

6. Tarasov M., Edelman V. Nanodevices with Normal Metal–Insulator–Superconductor Tunnel Junctions //Functional Nanostructures and Metamaterials for Superconducting Spintronics: From Superconducting Qubits to Self-Organized Nanostructures. – 2018. – Ñ. 91-116.

7. Feshchenko A. V. et al. Tunnel-junction thermometry down to millikelvin temperatures //Physical Review Applied. – 2015. – Ò. 4. – ¹. 3. – Ñ. 034001.

8. Pekola J. Trends in thermometry //Journal of low temperature physics. – 2004. – Ò. 135. – Ñ. 723-744.

9. Isosaari E. et al. Thermometry by micro and nanodevices //The European Physical Journal Special Topics. – 2009. – Ò. 172. – ¹. 1. – Ñ. 323-332.

10. Pekola J. P. et al. Microrefrigeration by quasiparticle tunnelling in NIS and SIS junctions //Physica B: Condensed Matter. – 2000. – Ò. 280. – ¹. 1-4. – Ñ. 485-490.

11. Nguyen H. Q. et al. Trapping hot quasi-particles in a high-power superconducting electronic cooler //New Journal of Physics. – 2013. – Ò. 15. – ¹. 8. – Ñ. 085013.

12. Clark A. M. et al. Cooling of bulk material by electron-tunneling refrigerators //Applied Physics Letters. – 2005. – Ò. 86. – ¹. 17.

13. O'Neil G. C. Improving NIS tunnel junction refrigerators: Modeling, materials, and traps : äèñ. – University of Colorado at Boulder, 2011.

14. Nahum M., Martinis J. M. Ultrasensitive‐hot‐electron microbolometer //Applied physics letters. – 1993. – Ò. 63. – ¹. 22. – Ñ. 3075-3077.

15. Nahum M., Richards P. L., Mears C. A. Design analysis of a novel hot-electron microbolometer //IEEE transactions on applied superconductivity. – 1993. – Ò. 3. – ¹. 1. – Ñ. 2124-2127.

16. Vystavkin A. N. et al. Normal-metal hot-electron bolometer with Andreev reflection from superconductor boundaries //Journal of Experimental and Theoretical Physics. – 1999. – Ò. 88. – Ñ. 598-602.

17. Kuzmin L. S., Devyatov I. A., Golubev D. Cold-electron bolometer with electronic microrefrigeration and general noise analysis //Millimeter and Submillimeter Waves IV. – SPIE, 1998. – Ò. 3465. – Ñ. 193-199.

18. Brien T. L. R. et al. A strained silicon cold electron bolometer using Schottky contacts //Applied Physics Letters. – 2014. – Ò. 105. – ¹. 4.

19. Schmidt D. R. et al. Normal metal–insulator–superconductor junction technology for bolometers //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2006. – Ò. 559. – ¹. 2. – Ñ. 516-518.

20. Schmidt D. R. et al. A superconductor–insulator–normal metal bolometer with microwave readout suitable for large-format arrays //Applied Physics Letters. – 2005. – Ò. 86. – ¹. 5.

21. Tarasov M. et al. Arrays of annular cryogenic antennas with SINIS bolometers and cryogenic receivers for SubTHz observatories //EPJ Web of Conferences. – EDP Sciences, 2018. – Ò. 195. – Ñ. 05010.

22. Devyatov I. A., Krutitskiĭ P. A., Kupriyanov M. Y. Investigation of various operation modes of a miniature superconducting detector of microwave radiation //JETP letters. – 2006. – Ò. 84. – Ñ. 57-61.

23. Devyatov I. A., Kupriyanov M. Y. Investigation of a nonequilibrium electron subsystem in low-temperature microwave detectors //Journal of Experimental and Theoretical Physics Letters. – 2004. – Ò. 80. – Ñ. 646-650.

24. Balega Y. Y. et al. Superconducting Receivers for Space, Balloon, and Ground-Based Sub-Terahertz Radio Telescopes //Radiophysics and Quantum Electronics. – 2020. – Ò. 63. – ¹. 7. – Ñ. 479-500.

25. Luukanen A. et al. Passive Euro-American terahertz camera (PEAT-CAM): passive indoor THz imaging at video rates for security applications //Passive Millimeter-Wave Imaging Technology X. – SPIE, 2007. – Ò. 6548. – Ñ. 57-63.

26. Tarasov M. et al. SINIS bolometer with a suspended absorber //Journal of Physics: Conference Series. – IOP Publishing, 2018. – Ò. 969. – ¹. 1. – Ñ. 012088.

27. Gunbina A. et al. Fabrication of aluminium nanostructures for microwave detectors based on tunnel junctions //Advances in Microelectronics Reviews; Yurish, SY, Ed.; IFSA Publishing, SL: Barcelona, Spain. – 2021. – Ò. 3. – Ñ. 183-212.

28. Zhang K. et al. Bridge-free fabrication process for Al/AlOx/Al Josephson junctions //Chinese Physics B. – 2017. – Ò. 26. – ¹. 7. – Ñ. 078501.

29. Lecocq F. et al. Junction fabrication by shadow evaporation without a suspended bridge //Nanotechnology. – 2011. – Ò. 22. – ¹. 31. – Ñ. 315302.

For citation:

Tarasov M.A., Gunbina A.A., Chekushkin A.M., Yusupov R.A., Kozulin R.K., Fominskii M.Yu. Bolometers with suspended absorbers. // Journal of Radio Electronics. – 2024. – ¹. 11. https://doi.org/10.30898/1684-1719.2024.11.30 (In Russian)